A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is application/pdf
.
Electricity load forecasting using a deep neural network
2019
Forecasting the daily load demand of an electric utility provider is a complex problem as it is nonlinear and influenced by external factors. Deep learning, machine learning and artificial intelligence techniques have been successfully employed in electric consumption load, financial market, and reliability predictions. In this paper, we propose the use of a deep neural network (DNN) for short-term load forecasting (STLF) to overcome nonlinearity problems and to achieve higher forecasting
doi:10.14456/easr.2019.2
fatcat:3i3jcx43ovc4jkitgqq6a3dlbq