A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2017; you can also visit the original URL.
The file type is application/pdf
.
Toward phonon-boundary engineering in nanoporous materials
2014
Applied Physics Letters
Tuning thermal transport in nanostructured materials is a powerful approach to develop high-efficiency thermoelectric materials. Using a recently developed approach based on the phonon mean free path dependent Boltzmann transport equation, we compute the effective thermal conductivity of nanoporous materials with pores of various shapes and arrangements. We assess the importance of pore-pore distance in suppressing thermal transport, and identify the pore arrangement that minimizes the thermal
doi:10.1063/1.4891362
fatcat:hf35dp2cubguhfagcjqpeisdtq