Research of a Flexible Space-Vector-Based Hybrid PWM Transition Algorithm between SHEPWM and SHMPWM for Three-Level NPC Inverters

Tao Jing, Andrey Radionov, Alexander Maklakov, Vadim Gasiyarov
2020 Machines  
In this paper, one model of flexible space-vector-based hybrid pulse width modulation (HPWM) transition algorithm consisting of selective harmonic elimination pulse width modulation (SHEPWM) and selective harmonic mitigation pulse width modulation (SHMPWM) is applied and examined in a 10kV grid with a three-level neutral point clamped (3L-NPC) grid-connected inverter. These two modulation techniques are used to produce the appropriate firing pulses for 3L-NPC grid-connected inverters in
more » ... t cases. SHMPWM is adopted to the grid-connected inverters to mitigate the required odd non-triplen harmonics according to the requirements of grid codes EN 50160 and CIGRE WG 36-05, while the firing pulses generated using SHEPWM is used to eliminate the primary low-order odd non-triplen harmonics completely. Meanwhile, one smooth and fast transition scheme is proposed by providing a suitable switching angles set at the transition point. Finally, it is demonstrated and validated by the MATLAB/SIMULINK model that smooth and quick transition is realized and there is no sudden change of current during the transition, as expected. Furthermore, this hybrid PWM technique is universal for different PWM methods based on the specific operating conditions.
doi:10.3390/machines8030057 doaj:1ab624cff6e74d54b006b40aff4a446f fatcat:pjta37jcvjh6dkbakenoopb4ia