Simultaneous Feature and Sample Reduction for Image-Set Classification

Man Zhang, Ran He, Dong Cao, Zhenan Sun, Tieniu Tan
2016 PROCEEDINGS OF THE THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE AND THE TWENTY-EIGHTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE  
Image-set classification is the assignment of a label to a given image set. In real-life scenarios such as surveillance videos, each image set often contains much redundancy in terms of features and samples. This paper introduces a joint learning method for image-set classification that simultaneously learns compact binary codes and removes redundant samples. The joint objective function of our model mainly includes two parts. The first part seeks a hashing function to generate binary codes
more » ... have larger inter-class and smaller intra-class distances. The second one reduces redundant samples with discrete constraints in a low-rank way. A kernel method based on anchor points is further used to reduce sample variations. The proposed discrete objective function is simplified to a series of sub-problems that admit an analytical solution, resulting in a high-quality discrete solution with a low computational cost. Experiments on three commonly used image-set datasets show that the proposed method for the tasks of face recognition from image sets is efficient and effective.
doi:10.1609/aaai.v30i1.10156 fatcat:mada5wfnkvc7vffkznqcch7ay4