A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2018; you can also visit the original URL.
The file type is application/pdf
.
Efficient High-Dimensional Inference in the Multiple Measurement Vector Problem
2013
IEEE Transactions on Signal Processing
In this work, a Bayesian approximate message passing algorithm is proposed for solving the multiple measurement vector (MMV) problem in compressive sensing, in which a collection of sparse signal vectors that share a common support are recovered from undersampled noisy measurements. The algorithm, AMP-MMV, is capable of exploiting temporal correlations in the amplitudes of non-zero coefficients, and provides soft estimates of the signal vectors as well as the underlying support. Central to the
doi:10.1109/tsp.2012.2222382
fatcat:a67fqu3ygrgprjnp3wwohi4v3i