Performance-oriented strategies for integration and wiring of the photosystem I inside 2D and 3D architectures and coupling photocatalysis with enzymatic catalysis [article]

Dmitri Ciornii, Humboldt-Universität Zu Berlin
2020
In this thesis, different strategies for coupling of the natural complex photosystem I from the cyanobacterium Thermosynechococcus elongatus with different electrode surfaces, and the interaction of PSI with nanomaterials and enzymes has been investigated. First, it was shown that immobilization of PSI on modified multi-walled carbon nanotubes (MWNT) leads to a functional photobiohybrid electrode. Here, PSI has been electrically wired to the electrode via a redox-active protein, cytochrome c
more » ... in, cytochrome c (cyt c). The system (PSI-cyt c) has been scaled up to the three-dimensional surface of a metal-oxide, indium tin oxide (ITO). Here, additionally the high transparency property of this material has been exploited. The new preparation procedure of such transparent electrodes has been optimized in order to achieve high pohotocurrents. Furthermore, a new method of electric wiring of the PSI with the electrode has been established. Here, fullerenes have been employed. The high molecular efficiency of such a system proves that fullerenes are more effective wiring agents between the PSI and the electrode as compared to the cyt c. Additionally, in this thesis the photocatalytic property of the PSI has been combined with the biocatalytic property of the enzyme human sulphite oxidase, hSOx. Here, the enzyme has been employed as an alternative electron supplier for PSI. The third protein, cyt c, acted as an electric wiring agent and ensured electric communication between both catalytic proteins of the system and the electrode. The versatility of the PSI as well as its communication with anorganic nanomaterials and biological molecules, e.g. such as enzymes, shows a great potential for use of PSI-based biohybrids in the future biotechnological applications.
doi:10.18452/21813 fatcat:qddh2cc2gfcmhkc2qx6fm4xs7i