A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2022; you can also visit the original URL.
The file type is application/pdf
.
Masked Autoencoder for Pre-Training on 3D Point Cloud Object Detection
2022
Mathematics
In autonomous driving, the 3D LiDAR (Light Detection and Ranging) point cloud data of the target are missing due to long distance and occlusion. It makes object detection more difficult. This paper proposes Point Cloud Masked Autoencoder (PCMAE), which can provide pre-training for most voxel-based point cloud object detection algorithms. PCMAE improves the feature representation ability of the 3D backbone for long-distance and occluded objects through self-supervised learning. First, a point
doi:10.3390/math10193549
fatcat:xrq4hrh6e5bzxauwapekv7sfvu