Coalgèbres d'Alexander-Whitney:un modèle algébrique pour les espaces topologiques

Théophile Naïto
2009
Finalement, on présente et discute quelques problèmes ouverts concernant les coalgèbres d'Alexander-Whitney et qui semblent particulièrement intéressants. Ce qui ouvre de belles perspectives pour des recherches futures dans ce domaine des coalgèbres d'Alexander-Whitney. Mots clés : coalgèbre d'Alexander-Whitney, opérade, opérade d'Alexander-Whitney, module à droite sur une opérade, modèle minimal, catégorie DCSH. ii Abstract The goal of this work is to study Alexander-Whitney coalgebras (first
more » ... efined in [HPST06]) from a topological point of view. An Alexander-Whitney coalgebra is a coassociative chain coalgebra over Z with an extra algebraic structure : the comultiplication must respect the coalgebra structure up to an infinite sequence of homotopies (this sequence is part of the data of the Alexander-Whitney coalgebra structure). Alexander-Whitney coalgebras are interesting for topologists because the normalized chain complex C(K) of a simplicial set K is endowed with an Alexander-Whitney coalgebra structure. This theorem is proved for the first time here (generalising a result proven in [HPST06] ). This theorem gives the hope that the Alexander-Whitney coalgebra structure of C(K) contains interesting information that can be used to solve topological problems. This hope is strengthened by the sucess already obtained in the work of several topologists. Among others, [HPST06], [HL07], [Boy08], and [HR] use the Alexander-Whitney coalgebra structure of the normalized chains of a simplicial set in an essential way to solve topological problems. This thesis begins with some background material. In particular, the definition of a DCSH morphism between two coassociative chain coalgebras is recalled in complete detail. For example, signs are determined with great precision. Next we devote a chapter to the definition of Alexander-Whitney coalgebras and to their importance in topology. In the following chapter we begin the conceptual study of Alexander-Whitney coalgebras. A global study of these objects had not yet been carried out even if the Alexander-Whitney coalgebra structure has been studied and used in order to answer some specific questions. With the aim of studying Alexander-Whitney coalgebras in a nice setting, we develop an operadic description of these coalgebras in the following chapter. More precisely, we show that there is an explicit operad AW such that the coalgebras over this operad are exactly the Alexander-Whitney coalgebras. Furthermore, AW is shown to be a Hopf operad, so that the category formed by the Alexander-Whitney coalgebras is actually a monoidal category. These results are proven in a reasonably general framework. In fact, we associate an operad to each bimodule (over the associative operad) of a certain type, such that we get AW if this bimodule is well chosen. In particular, these results enable us to study Alexander-Whitney coalgebras from the standpoint of operads. This strategy is recognised to be successful in various mathematical situations, and especially in algebraic topology. Moreover, we develop a minimal model notion in the setting of right module over a chosen operad (which has to satisfy some reasonable conditions), with the aim of applying this result to the special case of the Alexander-Whitney coalgebras. This is possible because coalgebras over some fixed operad P can be seen as right modules over P. And the category of right modules over P has some nice features which do not appear to hold in the category of P-coalgebras. The inspiration for this part of our work comes from the notion of minimal model developed in the framework of rational homotopy theory. The two following facts show that it is reasonable to try to adapt some ideas of rational homotopy theory to the category of Alexander-Whitney coalgebras. A. There is a theorem that says that studying topological spaces up to rational equivalences is, essentially, equivalent to studying cocommutative chain coalgebras over the field of rational numbers. This is false if the ring of integers replaces the field of rational numbers, but Alexander-Whitney coalgebras are "almost" cocommutative in the sense which is explained in this thesis. iii B. It could be that the Alexander-Whitney coalgebra structure of the normalized chains of a simplicial set is weak enough to allow explicit computations. At least, it is clear that the Alexander-Whitney coalgebra structure on the normalized chains is far from being an E ∞ -structure (such a structure determines the homotopy type of the considered simplicial set, at least under some conditions). The chapter about minimal models in the framework of right modules over an operad includes an existence theorem and a discussion of the unicity of this model. In the second part of this chapter, we construct an explicit path-object in the model category of right modules over an operad. This path-object is then used to investigate the topologically relevant information that could stem from the minimal model in the case of the operad AW. Finally, we present and examine some interesting open questions about Alexander-Whitney coalgebras. These questions give a nice outlook on future research in this area. Keywords : Alexander-Whitney coalgebra, operad, Alexander-Whitney operad, right module over an operad, minimal model, DCSH category. iv Remerciements J'ai eu la chance de travailler dans un groupe, le groupe de topologie de l'EPFL, qui est animé d'un fort esprit d'équipe. Je remercie chaque membre de ce groupe, passé ou présent, pour cet esprit. Comme j'ai encore un peu de place, je vais maintenant remercier chacun des membres que j'ai pu côtoyer : Kathryn Hess, évidemment, ma directrice de thèse. Je la remercie de m'avoir accueilli dans son groupe. Elle m'a guidé vers la recherche avec perspicacité. Apprendre des mathématiques présentées joliment au tableau noir par un expert est souvent une chose très différente de la recherche, et Kathryn a parfaitement su attirer mon attention sur certains aspects que j'aurais certainement négligés autrement. Je remercie Kathryn pour m'avoir donné la possibilité de voyager et de participer à un grand nombre d'événements mathématiques. Finalement, je la remercie pour ses encouragements (et son aide) à rester dans la recherche mathématique. Nicolas Michel, mon collègue de bureau durant environ trois ans et demi. Même si nous n'avons finalement fait que peu de mathématiques ensemble, son style teinté d'une extrême rigueur et d'une toute aussi extrême précision m'a parfois rappelé à l'ordre et encouragé lorsque cela était nécessaire. Et de manière plus générale, il a toujours été très intéressant et agréable de discuter avec lui de toutes sortes de sujets. Ilias Amrani, un autre doctorant de Kathryn. Son énorme culture générale et la justesse de sa pensée m'ont souvent été très précieuses ; ma vision des mathématiques et plus particulièrement de la topolgie algébrique est certainement fortement (et positivement !) influencée par Ilias. Je le remercie pour m'avoir parfois aidé dans mes tâches d'assistanat lorsque j'ai eu besoin d'aide. Jan Brunner, le premier de cordée. Nous avons commencé nos études de doctorat simultanément et il a été mon premier collègue de bureau. C'est lui qui, du groupe actuel des doctorants en topologie, a terminé en premier. Son imperturbable optimisme et sa volonté ont certainement été importants, par l'exemple, dans les moments difficiles. Patrick Muller, le dernier à avoir commencé sa thèse dans le groupe de topologie. De lui, je retiens ici la tranquilité et la sérénité, qui ont souvent déteint sur moi. Son aide a été précieuse de deux manières différentes : d'une part il a pris sur lui l'organisation annuelle du "Young topologists' meeting in the Swiss Alps", et d'autre part il m'a aussi aidé dans mes tâches d'assistanat lorsque j'en ai eu besoin. Je remercie également chacun des post-docs du groupe de topologie que j'ai pu côtoyer durant ces années : Peter Bubenik, Jonathan Scott, Sverre Lunoe-Nielsen, Christine Vespa, Samuel Wütrich, et John Harper. Il a été très agréable de travailler et d'apprendre des mathématiques avec eux. Evidemment, je remercie aussi tous les membres de mon jury de thèse pour avoir accepté d'expertiser mon travail. Le président du jury, le Prof. P. Michel. Le Prof. J. Scott, qui, avec Kathryn, est à l'origine du sujet de ma thèse et qui m'a patiemment introduit aux opérades durant son séjour à Lausanne. Le Prof. B. Fresse, qui s'est toujours montré disponible pour discuter lors des quelques occasions où j'ai pu le rencontrer. C'est un grand honneur d'avoir un chercheur aussi prestigieux que lui dans mon jury. La Prof. D. Testerman, qui m'a fait part de nombreux commentaires malgré qu'elle ne soit pas une spécialiste de la topologie algébrique !
doi:10.5075/epfl-thesis-4381 fatcat:doqg4rdhovezngfu27ijjfrn7u