A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2017; you can also visit the original URL.
The file type is application/pdf
.
Quadratic Descent of Involutions in Degree 2 and 4
1995
Proceedings of the American Mathematical Society
If K/F is a quadratic extension, we give necessary and sufficient conditions in terms of the discriminant (resp. the Clifford algebra) for a quadratic form of dimension 2 (resp. 4) over K to be similar to a form over F . We give similar criteria for an orthogonal involution over a central simple algebra A of degree 2 (resp. 4) over K to be such that A = A' ®F K , where A' is invariant under the involution. This leads us to an example of a quadratic form over K which is not similar to a form
doi:10.2307/2160928
fatcat:74qifpfu3jfythgoziesltojqu