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SUMMARY

Patterns in permutations have been extensively studied in the past, as a topic within the area of

enumerative combinatorics, and they have turned out to be useful when answering various questions in

computer science, statistics, computational biology and other fields.

Suppose that we have two permutations σ = σ1 · · ·σk ∈ S k and π = π1 · · · πn ∈ S n, where k ≤ n

and S m denotes the set of permutations of size m. We say that π contains the classical pattern σ, if there

exist indices 1 ≤ i1 < · · · < ik ≤ n, such that πia < πib , if and only if σa < σb, for every 1 ≤ a, b ≤ k.

This means that the elements of the subsequence πi1 · · · πik are in the same relative order as the elements

of σ. Every such subsequence of π is called an occurrence of σ in π. If π does not have any occurrences

of σ, we say that π avoids σ. Two generalizations of classical patterns are the so-called vincular and

bivincular patterns.

In this thesis, we consider a series of new questions whose answers involve permutation patterns. We

investigate sorting by queues that can rearrange their content by applying permutations corresponding

to shuffling methods. Some of our main results are related to sorting by cuts. We also study a large

class of permutation statistics, which can be written as a linear combination of bivincular patterns. We

develop an approach, previously applied to statistics in other combinatorial structures, which allows one

to find closed-form expressions for the higher moments of the statistics in this class. In addition, we

consider a generalization of vincular patterns, which we call distant patterns, and we obtain a number

of interesting enumerative results related to them.

ix



CHAPTER 1

INTRODUCTION AND RELEVANT RESULTS

If we have two combinatorial objects, it is natural to ask how many times does the first object, called

a pattern, occur as a part of the second one. Patterns in various combinatorial structures have been

extensively studied in the past. This includes patterns in set partitions [110], trees [45], Dyck paths [19]

and permutations [26, 102]. In this thesis, we consider some new results involving the notion of patterns

in permutations. We investigate a set of new questions related to sorting, as well as an application of

this notion to statistics in permutations. Furthermore, we study a certain generalization of permutation

patterns called distant patterns. In the current chapter, we recall some necessary background and some

standard results related to permutation patterns.

1.1 Avoidance of classical patterns in permutations

The set of consecutive integers {i, i + 1, . . . , j} will be denoted by [i, j]. A permutation of size n is

a bijective map from [n] B [1, n] to itself. When referring to permutations, we will use their one-line

representation. The set of all permutations of size n will be denoted by S n. For example, S 1 = {1},

S 2 = {12, 21} and S 3 = {123, 132, 213, 231, 312, 321}.

Definition 1.1 (reduction of a sequence). Let q = q1 · · · qk be a sequence of k different numbers. The

reduction of q, denoted by red(q), is the unique permutation π = π1 · · · πk ∈ S k, such that its elements

are in the same relative order as the elements of q, i.e., πi < π j if and only if qi < q j, for all i, j ∈ [k].

1



2

The permutation red(q) can be obtained by replacing the i-th smallest element of q with i, for every

i ∈ [k]. For example, red(5724) = 3412 since the smallest element, 2, of 5724 is replaced with 1, the

second smallest element, 4, is replaced by 2, etc.

We say that α is a subsequence of the permutation π = π1 · · · πn, if there exist indices 1 ≤ i1 < · · · <

im ≤ n, such that α = πi1πi2 · · · πim . If the indices i1, . . . , im are consecutive numbers, then we will say

that α is a segment of π.

Definition 1.2 (occurrence of a classical pattern). A permutation π contains a permutation σ as a (clas-

sical) pattern, if there is a subsequence λ of π such that red(λ) = σ. We will say that λ is an occurrence

of σ in π. If π does not contain σ, then π avoids σ.

In other words, π contains the pattern σ, if and only if π has a subsequence with elements in the

same relative order as the elements of σ.

Example 1.3. The permutation π = 6325147 contains the pattern σ = 231 since 351 is a subsequence

of π and red(351) = 231. It avoids the pattern 1234, as π does not have an increasing subsequence of

size 4.

The given definition of pattern occurrence is related to the one-line representation of a permutation.

An alternative geometric definition provides another perspective. We can visualize the permutation

π = π1π2 · · · πn ∈ S n by plotting the points (i, πi) in the xy-plane. This is how we obtain the permutation

diagram of π. A permutation π contains a permutation σ as a pattern, if the diagram of π contains

the diagram of σ as a subdiagram. The permutation diagram of 6325147 is shown in Figure 1a. This
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diagram contains the diagram of 231, as shown in Figure 1b. Therefore, 6325147 contains the pattern

231.

(a) The permutation diagram of 6325147. (b) 6325147 contains the pattern 231.

Figure 1: Occurrence of a pattern.

Finding the set of permutations (or the number of permutations) of a certain size with a given number

of occurrences of a fixed pattern is a difficult problem, in general. Thus, most of the existing literature

focuses on questions related to avoidance/containment of permutation patterns. If X is a set of patterns,

then let

Avn(X) B {π | π ∈ S n, π avoids σ for any σ ∈ X},
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with avn(X) B |Avn(X)|. Also, let Av(X) B ∪∞n=1Avn(X), for any set of permutations X. We will also

write

Cn(X) B S n \ Avn(X),

to denote the set of permutations of size n that contain at least one of the patterns in X.

Definition 1.4 (permutation class). A permutation class C is a set of permutations, such that if π ∈ C

and π contains σ, then σ ∈ C.

Using that definition, one can check directly that the set Avn(X) is a permutation class, for any set

X. It is not difficult to prove that all permutation classes are of this kind.

Theorem 1.5. For every permutation class C, there exists a unique set of patterns T , such that

C = Av(T ).

The set T is called a basis of C.

Proof. Let C B ∪∞n=1S n \ C. Consider the set T B {t ∈ C | for all σ, if t contains σ then σ < C}. In

other words, T is the set of those permutations that are not in C, and which are the minimal elements in

terms of pattern containment. One can verify directly that C = Av(T ). □

There are well-known results in combinatorics that can be formulated in terms of permutation

patterns. For example, it is easy to see that the following theorem of Erdős and Szekeres states that

avn(12 · · · r, s · · · 1) = 0, for any r, s ≥ 1, such that n ≥ rs + 1.
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Theorem 1.6 (Erdős and Szekeres [59]). For r, s ∈ N, any sequence of distinct real numbers of size at

least rs + 1 contains an increasing subsequence of size r or a decreasing subsequence of size s.

Some of the first results related to permutation patterns can be traced back to work by Euler in the

18th century [62] and work by Percy MacMahon at the beginning of the 20th century [107]. MacMahon

obtained the generating function for the distribution of the number of inversions in permutations, which

corresponds to the number of occurrences of the classical pattern 21. In 1970s, results by Knuth [104]

showed that permutation patterns can appear in facts related to computer science. The article of Rodica

Simion and Frank Schmidt from 1985 [129] was the first one to consider the simultaneous avoidance of

multiple patterns and the first systematic study of permutation patterns. More details on the history of

the first results in permutation patterns and their applications can be found in the Forward of [102].

1.1.1 Symmetry classes and Wilf-equivalent classes of permutations

For a permutation π = π1 · · · πn, let π−1 denotes the inverse of π. Also, let π and πr denote the

complement and the reverse of π, respectively:

π j = n + 1− π j,

and

(πr) j = πn+1− j,

for every j ∈ [n].

These three transformations are simple bijective maps on S n, which generate the dihedral group

D4; i.e., the group of symmetries of the square, if we look at the corresponding transformations of
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the permutation diagram of π. In particular, the reverse, the complement and the inverse map act as a

horizontal, vertical and diagonal symmetry of the square, respectively (see Figure 2 below).

reverse

complement

inverse

Figure 2: The symmetries corresponding to the three transformations generating the group D4.

Formally, if D4 is the group of symmetries of the square and if i, r and c denote the inverse, the

reverse and the complement maps, respectively, then

D4 =< i, r, c >= {id, i, r, c, i ◦ r, c ◦ r, i ◦ c, i ◦ c ◦ r}.

The action of D4 partitions S n into several equivalence classes that will be called symmetry classes.
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Definition 1.7 (symmetry class of a permutation). The symmetry class of a permutation σ is

[σ] B { f (σ) | f ∈ D4}.

For example, [132] = {132, 231, 213, 312}. Table I below lists the symmetry classes partitioning S 4.

Symmetry class Permutations in the class
[1234] {1234, 4321}

[1243] {1243, 3421, 4312, 2134}

[1324] {1324, 4231}

[1342] {1342, 2431, 4213, 3124, 1423, 3241, 4132, 2314}

[1432] {1432, 2341, 4123, 3214}

[2143] {2143, 3412}

[2413] {2413, 3142}

TABLE I: The 7 symmetry classes for the permutations of size 4.

Definition 1.8 (the symmetry class of a set). The symmetry class of a set of permutations X, denoted

by [X], is the collection of sets obtained from X through the action of D4:

[X] B {{ f (π) | π ∈ X} | f ∈ D4}.
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Example 1.9.

[132, 4321] = {{132, 4321}, {231, 1234}, {213, 4321}, {312, 1234}},

since id({132, 4321}) = i({132, 4321}) = {132, 4321}, r({132, 4321}) = i(c({132, 4321})) = {231, 1234},

c({132, 4321}) = i(r({132, 4321})) = {312, 1234}, and c(r({132, 4321})) = i(c(r({132, 4321}))) =

{213, 4321}.

Theorem 1.10. For every set of patterns X and any f ∈ D4,

Av( f (X)) = f (Av(X)).

Proof. Note that σ ∈ Av(π) if and only if f (σ) ∈ Av( f (π)). From here, we see that σ ∈ Av(X) if and

only if f (σ) ∈ Av( f (X)). Thus f (Av(X)) = Av( f (X)). □

Definition 1.11 (symmetry-equivalent sets). Two sets of permutations, X1 and X2, are symmetry-equivalent

if they belong to the same symmetry class, i.e., if there exists f ∈ D4, such that f (X1) = X2. We will

write X1 � X2.

For example, {132, 4321} � {231, 1234}, because r({132, 4321}) = {231, 1234}.

Theorem 1.12. If X1 and X2 are two sets of permutations, then X1 � X2 if and only if Av(X1) � Av(X2).

Proof. X1 � X2 if and only if f (X1) = X2, for some f ∈ D4. Therefore, Av( f (X1)) = Av(X2). By

Theorem 1.10, Av( f (X1)) = f (Av(X1)) = Av(X1). □
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Definition 1.13 (Wilf-equivalent classes). Two permutation classes Av(X1) and Av(X2) are Wilf-equivalent

if for every n ≥ 1,

avn(X1) = avn(X2).

We will write Av(X1) ∽ Av(X2).

Theorem 1.14. If X1 � X2, then Av(X1) ∽ Av(X2).

Proof. We know that Av(X1) � Av(X2) and thus f (Av(X1)) = Av(X2) for some f ∈ D4. Therefore,

f (Avn(X1)) = Avn(X2), for every n ≥ 1, and |Avn(X1)| = |Avn(X2)|, since f is a bijection. □

Note that the converse of Theorem 1.14 does not hold, i.e., Av(X1) ∽ Av(X2) does not imply that

X1 and X2 are symmetry-equivalent. For instance, the classes Av({1234}) and Av({1432}) are Wilf-

equivalent [131], but they are not symmetry-equivalent.

1.1.2 Enumerative results

Most of the permutation pattern research is about enumerating the sets Avn(X), that is, finding a

closed-form formula, generating function or a recurrence for avn(X), for various sets X. Here, the

symmetries discussed in the previous section often allow us to reduce this enumeration problem to the

enumeration of other permutation classes. Below, we consider the cases when |X| = 1. Let X = {q},

where q is a classical permutation pattern, with |q| = k. Instead of Avn({q}) and avn({q}), we will write

Avn(q) and avn(q).

1. If k = 1, then q = 1 and obviously avn(1) = 0, for n ≥ 1, since every permutation of positive size

has at least one element.
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2. If k = 2, then q = 12 or q = 21. We have

avn(12) = avn(21) = 1,

for every n ≥ 1, since every permutation of size n except 12 · · · n contains an occurrence of 21,

i.e., an inversion. Furthermore, 21 is the reverse of 12, and thus we have only one Wilf-equivalent

class.

3. If k = 3, then we have two symmetry classes: {123, 321} and {132, 312, 213, 231}. The following

fact can be derived from results of Percy MacMahon back in 1915 [108], as well as from later

results of Schensted around 1960 [128] and Hammersley around 1970 [81].

Theorem 1.15.

avn(123) = Cn,

where Cn =
(2nn )
n+1 is the n-th Catalan number.

In fact, there are the same number of 132-avoiding permutations of size n. Thus we have only one

Wilf-equivalent class of patterns of size 3.

Theorem 1.16.

avn(123) = avn(132) = Cn.

The first bijection between permutations avoiding a pattern from {123, 321} and permutations

avoiding a pattern from {132, 312, 213, 231} was given by Knuth [104]. Several other bijections
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of this kind, including one by Simion and Schmidt [129], were later found by various authors.

[102, Chapter 4] contains detailed description for each of them and a classification by the popular

statistics that each bijection preserves.

4. If k = 4, then the standard bijections give us 7 symmetry classes (see Table I). West [141] showed

that 1234, 1243 and 2143 belong to the same Wilf-equivalent class, while Stankova showed that

1342 ∽ 2413 [130] and that 1234 ∽ 3214 [131]. The listed results imply that in fact we have 3 dif-

ferent Wilf-equivalent classes of patterns of size 4. The classes of 1234 and 1342 are enumerated

by Gessel [79] and Bóna [22], respectively. No one has yet enumerated the class of 1324, despite

the recent interest [20, 39, 111]. This information is summarized in Table II below. Instead of

the formula for avn(1234) found by Gessel in [79], we give an alternative form of the same for-

mula in the table, which was found by Gessel a few years later and shared with Bóna in private

communication [26]. The same formula was established independently by Bousquet-Mélou [31].

Class Formula for avn(q) Reference

{1234, 1243, 2143, 3214} 1
(n+1)2(n+2)

n∑
k=1

(
2k
k

)(
n+1
k+1

)(
n+2
k+1

)
[79, Gessel]

{1342, 2413} (−1)n−1 (7n2−3n−2)
2 + 3

n∑
i=2

(−1)n−i2i+1 (2i−4)!
i!(i−2)!

(
n−i+2
2

)
[22, Bóna]

{1324} not yet found –

TABLE II: The 3Wilf-equivalent classes for patterns of size 4.
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The work of Stankova and West [132] completed the classification of patterns of size 6 and 7. The

same article lists the Wilf-equivalent classes for the patterns of size 5.

A great number of other works investigated the enumeration of the class Avn(X), when |X| > 1.

For example, all of the classes when X consists of two patterns of size 3 have been enumerated in the

seminal work of Simion and Schmidt [129]. The classification when X is a set of two size-4 patterns has

been completed by Le [106]. However, three of these classes are still not enumerated. The enumeration

and classification of all triples of 4-letter patterns has been completed in the work of Callan et al. [35].

The recent work of Albert et al. [2] discusses a new algorithmic framework, which allows to find the

generating functions of all symmetry classes avoiding m patterns of size 4, where 4 ≤ m ≤ 24.

1.1.2.1 Separable permutations

Definition 1.17 (Direct sum and skew-sum). If σ and τ are two permutations of sizes k and l, respec-

tively, then their direct sum σ ⊕ τ and their skew-sum σ ⊖ τ are defined as follows:

(σ ⊕ τ)(i) =


σ(i), if i ≤ k,

k + τ(i − k), if k + 1 ≤ i ≤ k + l.

(σ ⊖ τ)(i) =


l + σ(i), if i ≤ k,

τ(i − k), if k + 1 ≤ i ≤ k + l.

Example 1.18. 3124 ⊕ 132 = 3124576 and 3124 ⊖ 132 = 6457132.

Definition 1.19 (separable permutations). The separable permutations are those which can be built

from the permutation 1 by repeatedly applying the ⊕ and the ⊖ operations.

Separable permutations were introduced by Bose et al. [30]. In the same work, the authors proved

the following characterization.
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Theorem 1.20. The set of separable permutations is Av(3142, 2413).

This important class of permutations arose in the study of pop-stack sorting [12], which will be

discussed in Section 1.3.2.3. This class was first enumerated by West.

Theorem 1.21 (West [141]). The number of separable permutations of size n, avn(3142, 2413), is the

(n − 1)-st Schröder number [118, A006318].

1.1.3 Asymptotic results and the Stanley-Wilf conjecture

In general, it is very difficult to find a closed-form expression for avn(X), when the class X contains

patterns of size 5 or more. Because of that, we are interested in obtaining results on the asymptotic

behaviour of these numbers, since these provide intuition for the exact sizes of the sets Avn(X).

By Theorem 1.15, every classical pattern q ∈ S 3 is avoided by a number of permutations given by

the Catalan number Cn =
(2nn )
n+1 . We have Cn

Cn−1
= 4n−2

n+1 , so limn→∞ Cn
Cn−1

= 4 and therefore

lim
n→∞ n

√
avn(q) = 4, for any q ∈ S 3.

This leads naturally to the question of whether these limits exists for patterns q of larger size, and what

are their values.

Using a simple observation, inspired by the proof of the result of Erdős and Szekeres (Theorem

1.6), Bóna [25] showed that avn(12 · · · k) ≤ (k − 1)2n. Then, Regev [126] obtained results implying the

following.

Theorem 1.22 (Regev [126]).

lim
n→∞ n

√
avn(12 · · · k) = (k − 1)2.
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Unaware of the work of Regev and the bound on avn(12 · · · k), Herbert Wilf asked, around 1980,

whether avn(σ) ≤ (k − 1)n for every σ ∈ S k. Independently, Richard Stanley asked whether

limn→∞ n
√

avn(σ) = (k − 1)2, for all σ ∈ S k.

This raised the conjecture below.

Conjecture 1.23. (The Stanley-Wilf upper bound conjecture) For every σ ∈ S k, there exists a real

constant cσ, such that avn(σ) ≤ cn
σ.

Wilf formulated the following similar conjecture.

Conjecture 1.24. (The Stanley-Wilf limit conjecture) For every σ ∈ S k, there exists a real constant cσ,

such that limn→∞ n
√

avn(σ) = cσ.

The limit conjecture easily implies the upper bound conjecture. In 1999, Arratia [7] showed that

the converse is also true, i.e., the upper bound conjecture implies the limit conjecture and thus the two

conjectures are equivalent. An affirmative answer to these equivalent questions became known as the

Stanley-Wilf conjecture (a name coined by Bóna [135]). Different researchers attempted to prove it,

but they were able to do that only in special cases. The conjecture was finally established in 2004 by

Marcus and Tardos [116] who in fact proved a conjecture of Füredi and Hajnal, which had been shown

earlier to imply the Stanley–Wilf conjecture. We refer to the articles of Egge [58] and Stanley [135] for

more on the historical details and the facts leading to the proof.

The limit cσ = limn→∞ n
√

avn(σ) is called a Stanley-Wilf limit of σ. As the Stanley-Wilf conjecture

holds, it is natural to ask what are the possible values of these limits, as well as their values for particular

patterns. It is interesting to note that the largest and the smallest values of cσ for a fixed k = |σ| are
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not achieved by the identity permutation. For example, Theorem 1.22 implies that c1234 = 9. However,

the work of Bóna [22] gives that c1342 = 8 and the work of Albert et al. [4] gave that c1324 > 9.47.

Currently, the best known bound is c1324 > 10.27 by Bevan et al. [20]. Thus c1234 is neither the largest

nor the smallest Stanley-Wilf limit for the patterns in S 4. Bóna [23] conjectured that among the patterns

of a given size, the largest Stanley-Wilf limit is attained by a layered permutation. In the same work, he

also showed that Stanley-Wilf limits are not necessarily rational numbers. Jacob Fox [75] refuted the

conjecture of Bóna by also showing that cσ = 2kΘ(1) , for almost all permutations σ on k letters.

Finally, it is important to note that it is not known whether limn→∞ n
√

avn(Π) exists, for every set of

patterns Π .

1.2 Vincular and consecutive patterns

In this section, we introduce other types of permutation patterns that are needed to describe several

of our results in Chapter 3 and Chapter 4 of the thesis. First, we define vincular patterns, which allow

one to require the numbers in every pattern occurrence, corresponding to letters at consecutive positions

in the pattern, to be at consecutive positions in the permutation.

Definition 1.25 (vincular patterns).

(i) A vincular pattern σ of size k is a permutation in S k some of whose consecutive elements can be

underlined.

(ii) An occurrence of the vincular pattern σ ∈ S k in the permutation π is a subsequence λ =

λ1λ2 · · · λk of π, such that λ is an occurrence of σ in π, as a classical pattern, and the numbers

λi, λi+1, . . . , λ j are at consecutive positions in π, for any underlined segment σiσi+1 · · ·σ j in σ.
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Example 1.26. 312 is a vincular pattern of size 3. 615 is an occurrence of 312 in the permutation

621543 since the numbers 1 and 5 are at consecutive positions in it and red(615) = 312. Meanwhile,

614 is not an occurrence of 312.

Vincular patterns were introduced by Babson and Steingrı́msson under the name “generalized pat-

terns” [13]. It was shown in the same article that many Mahonian statistics in permutations can be

written as linear combinations of such patterns. A Mahonian statistic is a function defined over permu-

tations, whose values have the same distribution over S n, for each n, as the number of inversions. Sev-

eral subsequent works investigated vincular patterns in their own right (see the survey of Steingrı́msson

[137]). These patterns were also called “dashed patterns” to distinguish them from other generalizations

of classical patterns. According to [15], Claesson was the first one to use the term vincular patterns, to

connect them with the bivincular patterns defined in Section 1.5.

Definition 1.27 (consecutive patterns). A consecutive pattern is a vincular pattern with all of its elements

underlined. That is, in an occurrence of a consecutive pattern, the pattern must appear as a consecutive

substring in the permutation.

Example 1.28. 621543 contains a 321 pattern, but it does not contain a 312 pattern.

Some well-known counting problems in permutations can be restated as problems about counting

occurrences of consecutive patterns. For instance, occurrences of 12 (and respectively 21) correspond

to ascents (respectively, descents) and are counted by the Eulerian numbers [119]. Another example are

the up-and-down permutations, which are those in S n(123, 321).
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A popular and important reference on consecutive patterns is the work of Elizalde and Noy [57].

There, they give generating functions for the number of permutations with a given number of occur-

rences of several consecutive patterns of size 3 and 4, as well as of certain patterns of arbitrary size.

Note that this is a more general problem than determining the number of permutations avoiding (having

0 occurrences of) a consecutive pattern.

1.3 Sorting devices

A sorting device D is a tool that transforms a given input permutation π by following a particular

algorithm which could be deterministic or non-deterministic. The result is an output permutation π ′.

During the execution of the algorithm, every device D has a given configuration (sinp, sdev, sout), com-

prised of three sequences (strings) corresponding to the current string in the input, in the device, and in

the output, respectively. The initial configuration is (π, ε, ε) and the final configuration is (ε, ε, π ′).

Denote by D(π) the set of possible output permutations π ′, when using the device D on input π.

If idn denotes the identity permutation of size n, then we say that a permutation π can be sorted by D

if idn ∈ D(π), i.e., if there exists a sequence of input and output operations over the device D, which

transforms π to the identity. Let

S n(D) B {π | π ∈ S n, idn ∈ D(π)}

be the set of the permutations sortable by D. Furthermore, let pn(D) B |S n(D)|. In general, if D is a

sorting device and π ′ ∈ D(π), then any sequence of configurations for D that begins with (π, ε, ε) and

ends with (ε, ε, π ′), together with the sequence of corresponding sorting operations, will be called an

iteration of D over the input π.
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A natural question when one has a sorting device is: “Which π ∈ S n can be sorted when we use this

device?” Donald Knuth [104, Chapter 2.2.1] asked this question for the classical data structures stack,

queue and deque (double-ended queue) shown in Figure 3.

O I

(a) stack

O

I

(b) queue

O I

O I

(c) deque

Figure 3: The input and output operations on stack, queue and deque.

These three data structures are linear lists which are used frequently in programming to store and

access data. For each device, we have input operations (also called push operations), which insert an

element from the input to the device and output operations (also called pop operations), which move an

element from the device to the output:

• stack (St): the input operations I and the output operations O are made at one end of the list.

• queue (Q): the input operations I are made at one end of the list and the output operations O are

made at the other end of the list.
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• deque (Deq): two kinds of input operations (I and I) exist, as well as two kinds of output opera-

tions (O and O). The two pairs of input and output operations are made at the two opposite ends

of the list, as shown in Figure 3c.

In fact, Knuth asked which permutations can be obtained using these three devices, if we begin with

the identity permutation 12 · · · n. The two questions correspond to two equivalent viewpoints, since a

permutation π can be obtained from the identity by applying a given sequence of operations, if and only

if π−1 is sorted by the same sequence of operations.

1.3.1 Permutations that can be sorted by stack, queue and deque

Figure 4 given below shows an example of a permutation that can be sorted by a stack. Each of the

subfigures of Figure 4 shows the corresponding configuration of the stack, as well as the operation that

is used. For instance, the configuration of the stack corresponding to Figure 4e is (3, 42, 1) since the

input contains the string “3”, the content of the stack contains the string “42”, and the output contains

the string “1”. Recall that the initial configuration shown in Figure 4a is (4213, ε, ε), while the final

configuration shown in Figure 4i is (ε, ε, 1234). The set of permutations that can be sorted with a stack

turns out to be a permutation class.

Theorem 1.29. (Knuth [104, Chapter 2.2.1, Exercise 2])

S n(St) = Av(231).

We see that we cannot sort all the permutations with a stack. This is not possible even with a deque.

Pratt [123] showed that the set of the deque sortable permutations is a permutation class, which has an
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4213

(a)

213

4
push

(b)

13

4
2 push

(c)

3

4
2
1

push

(d)

3

4
2

1

pop

(e)

3

4

12

pop

(f)

3
4

12

push

(g)

4

123

pop

(h)

1234

pop

(i)

Figure 4: A sequence of operations sorting the permutation 4213 by a stack.

infinite basis and consists of five types of patterns. The enumeration of this class of patterns is still an

open problem. We give the full description of the class below.

Theorem 1.30 (Pratt [123]).

S n(Deq) = Av(TD),

where TD is the union of all the patterns in one of the following forms and any k ≥ 1:

i) (4k + 1)2(4k − 1)4 · · · (4k − 2)(4k − 5)(4k)(4k − 3),

obtained from the identity 12 · · · (4k + 1), after leaving the even elements fixed, rotating the odd

elements cyclically right by two places, and then interchanging (4k + 1) and (4k − 1).
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ii) (4k + 1)2(4k + 3)4 · · · (4k)(4k − 3)(4k + 2)(4k − 1),

obtained from the identity 12 · · · (4k + 3), after leaving the even elements fixed and rotating the

odd elements cyclically right by two places.

iii) patterns in form i) or form ii), with the first two elements interchanged.

iv) patterns in form i), with the largest two elements, 4k and 4k + 1, interchanged or patterns in the

form ii), with the largest two elements, 4k + 2 and 4k + 3, interchanged.

v) patterns in form i) or form ii), with both the largest two elements and the first two elements

interchanged.

Thus, the set TD contains four patterns of any odd size l ≥ 5:

TD = {52341, 25341, 42351, 24351, 5274163, 2574163, 5264173, 2654173, . . .}

The only permutation that can be sorted by a queue is the identity permutation and this, as Knuth

writes [104, Chapter 2.2.1], follows trivially “by the nature of the queue”.

Theorem 1.31.

S n(Q) = {1, 12, 123, . . .} = Av(21).

1.3.2 Sorting by modifications of stacks

The results of Knuth on stack-sorting were followed by a great number of articles investigating

sorting by different variations of a stack or networks of stacks. Some examples are stacks in series
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[141, 144], stacks in parallel [63, 138], pop-stacks [12] and stacks of bounded size [10]. A few of the

results in these works are discussed below.

1.3.2.1 Stacks in series

One can use a device several times in a row by using the output after one iteration as an input to the

next iteration over the same device. This is the so-called sorting in series. Let us denote by Wn,k the set

of permutations in S n, sortable with k iterations over a stack.

(output)
1234 4321 2341

(input)

Figure 5: Sorting the permutation 2341 with 2 stacks in series.

We have Wn,1 = Avn(231) and thus |Wn,1| =
(2nn )
n+1 , the n-th Catalan number [108]. The set Wn,2 was

obtained in the thesis of Julian West [141].

Theorem 1.32 (West [141]). A permutation π ∈ Wn,2 if and only if π ∈ Av(2341), and if it does not

have an occurrence of 3241, except possibly as part of an occurrence of 35241.
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Giving a characterization for the sets Wn,t, when t ≥ 3, is a complicated problem. Such charac-

terization for the set of 3-stack sortable permutations, Wn,3, which requires a new type of permutation

patterns, was given in [140].

The following formula for |Wn,2| was first conjectured in the same thesis of West [141] and later

proved by Zeilberger [144] with the help of computer.

Theorem 1.33 (Zeilberger [144]).

|Wn,2| =
2(3n)!

(n + 1)!(2n + 1)!
.

There is no known formula for |Wn,t|, when t ≥ 3. Some recent progress on the asymptotics of |Wn,3|

was made by Defant [44] and by Bóna [28].

1.3.2.2 Stacks in parallel

Which permutations can be sorted if we use several stacks in parallel? This problem is significantly

harder compared to the case of sorting by a single stack. Figure 6 illustrates how the permutation 4231,

which cannot be sorted by a single stack, can be sorted by two stacks in parallel.

Both Tarjan [138] and Even & Itai [63] showed independently that no finite set of forbidden classical

patterns can characterize the set of permutations sortable by k stacks in parallel, for k ≥ 2. However,

in 2015, Albert and Bousquet-Mélou enumerated the set of permutations that one can sort by 2 stacks

in parallel. They found a pair of functional equations that characterise the corresponding generating

function. Below, we formulate another important and recent result relating sorting by 2 stacks in parallel

and sorting by a deque.
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4231

(a)

231
4

(b)

31
4

2

(c)

1
4

2

3

(d)

4

2

3

1

(e)

4

2

3

1

(f)

4
3

12

(g)

4
123

(h)

1234

(i)

Figure 6: Sorting the permutation 4231 with 2 stacks in parallel.

Theorem 1.34 (Price [124]). If S n(SIP2) is the set of permutations in S n that can be sorted by 2 stacks

in parallel, then let µp B limn→∞ n
√
|S n(SIP2)| and let µd B

n
√

limn→∞ |S n(Deq)|. Then, µp and µd

exist and

µp = µd.

1.3.2.3 Pop-stacks

A pop-stack is a stack, for which every pop operation unloads the entire content of the stack. Figure 7

below shows how a permutation can be sorted by a pop-stack.
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32154

(a)

2154

3
push

(b)

154

3
2 push

(c)

54

3
2
1

push

(d)

54123

pop

(e)

4

5

123

push

(f)

4
5

123

push

(g)

12345

pop

(h)

Figure 7: A sequence of operations sorting the permutation 32154 by a pop-stack.

Theorem 1.29 implies that a permutation cannot be sorted by a pop-stack if it contains the pattern

231. The following result shows that the avoidance of only one other pattern is necessary and sufficient

for a permutation to be pop-stack sortable.

Theorem 1.35 (Avis and Newborn [12]). The set of permutations sortable by pop-stack is given by

Av(231, 312).

Alternatively, it is easy to show that a permutation can be sorted by a pop-stack if and only if it is

one of the so-called layered permutations. These are the permutations consisting of disjoint union of

factors (layers), such that the element decrease within each layer and increase between the layers. For

example, 3215476 is a layered permutation with layers 321, 54 and 76. Using this additional fact, Avis

and Newborn enumerated the class Avn(231, 312).
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Theorem 1.36 (Avis and Newborn [12]).

avn(231, 312) = 2
n−1.

Sorting by pop-stacks in series and by pop-stacks in parallel were investigated in [12] and [11],

respectively. These works show that the sets of permutations sortable with a fixed number of pop-stacks

in series (or in parallel) is, again, characterized by a finite set of forbidden classical patterns.

1.3.3 Sorting by modifications of deque and queue

The exercises at the end of the chapter defining stack-sorting in the book of Knuth [104, Chapter

2.2.1] consider sorting by two modifications of the device Deq. Let Deqir denote an input-restricted

deque and let Deqor denote an output-restricted deque. These two devices are deques, which can

perform an input and output operations, respectively, at only one of its ends. The possible operations

for them are shown in Figure 8 below.

O

O I

(a) Input-restricted deque

O I

I

(b) Output-restricted deque

Figure 8: The possible operations for input-restricted and output-restricted deque.
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It is known that the permutations sortable by these two devices are, again, characterised by permu-

tation classes.

Theorem 1.37 (Knuth [104]). S (Deqir) = Av(3241, 4231).

Theorem 1.38 (West [141]). S (Deqor) = Av(2431, 4231).

One of the few articles discussing sorting by modification of a queue is [54], where Peter Doyle

looks at a queue that is capable of doing direct transfers of elements from the input to the output. This

is a reasonable modification since allowing direct transfers does not change which permutations can be

obtained with the use of a stack. The same article establishes the following result.

Theorem 1.39 (Doyle [54]). If Qtr is a queue, which can perform direct transfers to its output, then

S (Qtr) = Av(321).

A generalization of these type of devices, performing direct transfers of elements are considered in

a work of Albert et. al [5].

1.4 Shuffling methods

Several articles [6, 8, 51, 139] investigate shuffling methods for a given deck of cards (not to be

confused with “deque”) or a given permutation. A shuffling method is a procedure that is comprised of

the following two steps: choose a permutation out of a given set according to a given distribution. Then,

apply this permutation over the deck. Any shuffling method has a permutation family, FΣ B {Πn
Σ ⊆

S n | n = 2, . . .}, which contains one set of size-n permutations, Πn
Σ that can be applied when using the
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method, for every n ≥ 2. An example of a shuffling method is shuffling by cuts, whose permutation

family is given below. This method is studied in Chapter 2.

Definition 1.40. The permutation family of the shuffling method cuts is

Fcuts B {{k(k + 1) · · · n12 · · · (k − 1) | k ∈ [2, n]} | n ≥ 2}. (1.1)

When one uses shuffling by cuts over an input of size n, one picks a permutation in the set Πn
cuts =

{k(k+ 1) · · · n12 · · · (k− 1) | k ∈ [2, n]} according to uniform distribution and applies it to the input. The

goal when applying any given shuffling method multiple times is to obtain a uniformly shuffled deck.

Diaconis, Fulman and Holmes [48, Section 2.3] give an overview of the previous work related to

shuffling. The mathematics of shuffling uses tools related to mixing times [47], representation theory

[73] and quasi-symmetric polynomials [133].

1.4.1 In-shuffles and Monge shuffles

In this section, we define the In-shuffle and Monge shuffling methods, as some of our results in

Chapter 2 are related to them. The book of Diaconis and Graham [49, Chapter 6] discusses these and

other shuffling methods.

The In-shuffle method is one of the two kinds of perfect riffle shuffles that are probably the most

popular shuffling methods. When using the perfect riffle shuffles, half of the deck is held in each hand

with the thumbs inward, then cards are released by the thumbs so that they fall to the table interleaved

perfectly, i.e., the first card is coming from one of the halves, the second from the other half and so on.

The Out-shuffles leaves the original top card back on top. The In-shuffles leaves the original top card
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second from top. For example, a deck of eight cards numbered by 1, 2, 3, 4, 5, 6, 7, 8 from top to bottom,

is transformed to 5, 1, 6, 2, 7, 3, 8, 4 after one In-shuffle. Applications of the riffle shuffles and some of

their mathematical properties are discussed in [9, 50]. The permutation family of the In-shuffle method

is

∀n ≥ 2 : Πn
In-sh =


{(k + 1)1(k + 2)2 · · · (2k)k}, if n = 2k, and

{(k + 1)1(k + 2)2 · · · (2k)k(2k + 1)}, if n = 2k + 1.

The Monge shuffle method is named after the eighteenth-century geometer Gaspard Monge, who

worked out the basic mathematical details of these shuffles [49]. The Monge shuffle is carried out by

successively putting cards over and under. The top card is taken into the other hand, the next is placed

above, the third below these two cards and so on. For example, a deck of eight cards numbered by

1, 2, 3, 4, 5, 6, 7, 8 from top to bottom, is transformed to 8, 6, 4, 2, 1, 3, 5, 7 after one Monge shuffle. The

permutation family of the Monge shuffling method is

∀n ≥ 2 : Πn
Monge = {· · · 642135 · · · }.

1.5 Permutation statistics that are linear combinations of patterns

Our goal in this section is to define a large family of statistics on permutations, in order to prove

certain facts about this family in Chapter 3. Let A(π) be the set of distinct pairs of integers (u, v), such

that u occurs before v in π. Formally,

A(π) B {(u, v) | u = πi, v = π j, i < j}.
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We will need the following Definition 1.41 of bivincular patterns that will be used only in Chapter 3.

In the same chapter, the bivincular patterns will be simply called “patterns.” We use this non-standard

definition, in order to be consistent with the notation in two previous works [37, 96], containing results,

analogous to those in Chapter 3, for patterns in set partitions and for patterns in matchings, respectively.

Bivincular patterns generalize the concept of vincular patterns. They are vincular patterns, for

which one is also allowed to require the numbers in every pattern occurrence, corresponding to some

letters with consecutive values in the pattern, to have consecutive values in the permutation. Bivincular

patterns were introduced by Bousquet-Mélou et al. in [32]. A main motivation for the authors was to

find a minimal superset for the set of vincular patterns, which is closed under the inverse operation, in

addition to the reverse and complement operations [102, Section 1.4].

Definition 1.41.

(i) A permutation pattern P of size k is a tuple P = (P,C(P), D(P)), where P = p1 · · · pk is a

permutation of size k and C(P) ⊆ [k − 1], D(P) ⊆ [k − 1] are two subsets.

(ii) An occurrence of the pattern P = (p1p2 · · · pk,C(P), D(P)) of size k in σ ∈ S n is a tuple s =

(t1, t2, . . . , tk) with ti ∈ [n], such that:

a) t1 < t2 < · · · < tk.

b) (ti, t j) ∈ A(σ), if and only if (i, j) ∈ A(P).

c) if i ∈ C(P), then σ−1(tpi+1) = σ−1(tpi) + 1, i.e., the positions of tpi and tpi+1 in σ are

consecutive.

d) if i ∈ D(P), then ti+1 = ti + 1, i.e., the values of ti and ti+1 in σ are consecutive.
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We will write s ∈P σ if s is an occurrence of P inσ. Note that an occurrence of a classical or vincular

pattern in a permutation is a subsequence of this permutation, while an occurrence of a bivincular pattern

is an increasing sequence of numbers in such subsequence.

Example 1.42. P = (4312, {2}, {3}).

t = (1, 3, 5, 6) ∈P 625143, since red(6513) = 4312, the positions of t3 = 5 and t1 = 1 are consecutive,

and t4 = 6 = t3 + 1.

Note that when D(P) = ∅, then P is a vincular pattern and that when both C(P) = ∅ and D(P) = ∅,

then P is a classical pattern. In these two cases, we will not write P as a tuple, but we will use the notation

introduced in Section 1.1 and Section 1.2. For instance, we will write 231 instead of (231, {1}, ∅), and

3124 instead of (3124, ∅, ∅).

The number of occurrences of the pattern P in σ will be denoted by cntP(σ). In the literature,

usually a permutation statistic is a function T : S → N, where S =
⋃∞

i=1 S n. In this thesis, when we

write statistic or simple statistic, we will refer to two classes of such functions defined below. In Chapter

3, we will show how one can find the higher moments of any statistic in these two classes.

Definition 1.43. (i) A simple statistic fP,Q is defined by a pattern P of size k and a valuation function

Q(s,w) = Q1(s)Q2(w), which is a product of two polynomials Q1,Q2 ∈ Z[y1, . . . , yk,m]. If

σ ∈ S n and s = (t1, t2, . . . , tk) ∈P σ, such thatσ(wi) = ti, for all i ∈ [k], then write Q(s, σ−1(s)) =

Q1(s)Q2(σ−1(s)) = Q1 |yi=ti,m=n Q2 |yi=wi,m=n. Let

f (σ) = fP,Q(σ) B
∑
s∈Pσ

Q(s, σ−1(s)) =
∑
s∈Pσ

Q1(s)Q2(σ−1(s)).
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Let the degree of a simple statistic fP,Q, denoted d( f ), be the sum of twice the size of P and the

degree of Q, which is the sum of the degrees of Q1 and Q2.

(ii) A statistic is a finite Q-linear combination of simple statistics. The degree of a statistic is defined

to be the minimum, over all such representations, of the maximum degree of any of the included

simple statistics.

Example 1.44. a) cntP B fP,1(σ) =
∑

s∈Pσ
1, which counts the number of occurrences of the

pattern P in σ, is a simple statistic for any bivincular pattern P, with valuation function Q = 1.

This includes any classical and any vincular pattern. If the corresponding permutation P is of size

k, then the degree of this simple statistic is d(cntP) = 2k. For instance, let us consider the number

of occurrences of P∗ = (312, {2}, {2}):

cntP∗(σ) =
∑

s∈P∗σ

1.

It was shown in [61] that the number of permutations in S n with k occurrences of this pattern is

equal to the number of matchings on [2n] with k right nestings and no left nestings.

b) Descent drop.

drops(σ) =
∑
σi>σi+1

σi − σi+1 =
∑

(t1,t2)∈21σ

t2 − t1

is a simple statistic corresponding to the pattern (21, {1}, ∅) with valuation function Q(s,w) =

Q1(s)Q2(w), where Q1(s) = Q1(t1, t2) = t2 − t1 and Q2(w) = 1. Thus, deg(Q) = 1 and

d(drops) = 5. Petersen and Tenner [121] showed that this statistic is equidistributed with the

statistic dp(σ) =
∑
σ(i)>i σ(i) − i, which they call “depth.” The depth of a permutation is half of
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another important statistic called “total displacement” or “Spearman’s disarray,” whose generat-

ing function was found in [120].

c) Sum of pinnacle squares.

pncSqSum(σ) =
∑

σ(i−1)<σ(i)>σ(i+1)

σ(i)2 =
∑

(t1,t2,t3)∈132σ

t23 +
∑

(t1,t2,t3)∈231σ

t23

is a statistic, which is a sum of the two simple statistics f1 = f132,t23 and f2 = f231,t23 . Thus,

d(pncSqSum) = max(d( f1), d( f2)) = 8. A pinnacle in a permutation σ is a value σ(i), such that

σ(i−1) < σ(i) > σ(i+1). An article investigating the number of permutations with a predefined

set of pinnacles, called a “pinnacle set”, is [43]. To the best of our knowledge, the sum of the

pinnacles and the sum of the squares of the pinnacles have not been yet investigated, despite the

recent interest in pinnacle sets [52, 53, 127]. Note that the number of pinnacles and the sum of the

peaks in a permutation are also statistics. We consider the sum of the squares for the pinnacles in

a permutation to demonstrate the power of the methods we use. We find a closed form expressions

for the first and the second moment of this more complicated statistic in Chapter 3.

1.5.1 Previous work on statistics in other combinatorial structures

Chern, Diaconis, Kane and Rhoades [37] considered a class of set partition statistics analogous to

the class of permutation statistics given by Definition 1.43. They showed that if a set partition statistic

belongs to this class, i.e., if it can be written as a linear combination of patterns, then its moments can

be expressed as a linear combination of shifted Bell numbers with coefficients that are polynomials in

n. Here, we state their result in a formal way.
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Definition 1.45 (set partition). A set partition of [n] is a family of non-empty subsets of [n], such that

each of its elements is included in exactly one subset.

Example 1.46. {{1, 4}, {2, 5}, {3}} is a partition of [5].

Consider the set, Πn, of all set partitions of [n]. Their number is Bn, the n-th Bell number [118,

A000110].

Example 1.47. When n = 3, the set Π3 contains B3 = 5 set partitions of [3]:

Π3 = {{1}, {2}, {3}}, {{1, 2}, {3}}, {{1, 3}, {2}}, {{1}, {2, 3}}, {1, 2, 3}.

Definition 1.48. Let f be a function defined over the set of all combinatorial structures of a given kind

(e,g., set partitions, permutations, compositions, etc.). Denote the set of these structures, of size n, by

Cn. Then, for a fixed n and r ≥ 0, the aggregate of f r is defined as

M( f r; n) B
∑
λ∈Cn

f (λ)r.

Note that the r-th moment of f , that is, the expectation of f r is given by

E( f r) =
M( f r; n)
|Cn|

.

Example 1.49. Let cr2(λ) denotes the number of 2-crossings in the set partition λ, i.e., the number

of tuples i1 < i2 < j1 < j2, such that i1, j1 and i2, j2 are in two different blocks. For instance,

cr2({{1, 3}, {2, 4, 5}}) = 2.
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It is known that the aggregate of cr2 is given by the following formula (Kasraoui, [95]):

M(cr2; n) =
∑
λ∈Πn

cr2(λ) =
1

4
(−5Bn+2 + (2n + 9)Bn+1 + (2n + 1)Bn).

The approach of Chern et al. gives us a way to find similar formulas for the aggregates of crr
2 for higher

values of r, because this statistics counts the number of occurrences of a simple pattern in set partitions.

For instance, they found the formula below:

M(cr22 ; n) ==
∑
λ∈Πn

cr2(λ)2 =
1

144
(225Bn+4 − (180n + 814)Bn+3 + (36n2 + 156n + 489)Bn+2+

(72n2 + 72n − 260)Bn+1 + (36n2 + 24n − 23)Bn).

The number of 2-crossings is just one of the many popular set partition statistics, for which similar

formulas exist.

Theorem 1.50 (Chern et al. [37]). For each set partition statistics f , which is a linear combination of

patterns in set partitions and for each r ∈ {0, 1, . . .}, there exists a closed form expression

M( f r; n) = Pk,2k(n)Bn+2k + Pk,2k−1(n)Bn+2k−1 + · · ·+ Pk,0(n)Bn,



36

where each Pk,2k− j is a polynomial with rational coefficients. Moreover, the degree of Pk,2k− j is


j, if j ≤ k

k − ⌈ j−k
2 ⌉, if j > k

.

Khare, Lorentz and Yan [96] developed the approach of Chern et al. on the set of perfect matchings

(set partitions with blocks of size 2). LetM2m denotes the set of all perfect matchings on [2m] and let

T2m B |M2m| = (2m − 1)(2m − 3) · · · 3 · 1 = (2m − 1)!! be called double factorials.

Theorem 1.51 (Khare et al. [96]). The aggregates of f r, where f is a perfect matchings statistic that

can be represented as a linear combination of patterns, can be written as linear combinations of double

factorials with constant coefficients.

For example, the last theorem gives

∑
M∈M2m

cr22(M) =

(
2m
4

)
T2m−4 + 12

(
2m
6

)
T2m−6 + 70

(
2m
8

)
T2m−8. (1.2)

Since the terms of the kind
(
2m
k

)
are polynomials of 2m of degree k, we get that the right-hand side of

Equation (1.2) can be written as a combination of double factorials with constant coefficients. Our goal

in Chapter 3 will be to develop the same approach for statistics on permutations and to obtain similar

closed form expressions for the aggregates (and respectively for the moments) of each permutation

statistics in the class given by Definition 1.43.
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1.5.2 Previous work on central limit theorems for permutation patterns

Some of our other results in Chapter 3 are related to giving new proofs of central limit theorems for

permutation patterns. We give the necessary background in the current section, as well as a list of some

past related results.

Definition 1.52 (normally distributed random variable). A random variable X = N(µ, σ2) is normally

distributed with expectation µ and variance σ2, if for any real number x,

P(X ≤ x) =
1
√
2πσ

∫ x

−∞ e−( t−µ
σ )2/2dt.

Definition 1.53 (convergence in distribution). A sequence X1, X2, . . . of real-valued random variables is

said to converge in distribution to a random variable X if

lim
n→∞ Fn(x) = F(x),

for every number x ∈ R at which F is continuous. Here Fn and F are the cumulative distribution

functions of the random variables Xn and X, respectively. We will write Xn −→
d

X.

The normal distribution appears frequently in the context of combinatorial enumeration [27, Chapter

3]. A major reason is the central limit theorem, which gives us that under rather general circumstances,

when independent random variables are added, their properly normalized sum converges in distribution

to the normal distribution. In this case, we say that this variable is asymptotically normal.
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Consider Xn B cntP(σ) as a random variable, where σ ∈ S n is chosen uniformly at random and P is

a fixed pattern. We do not have a straightforward way to write Xn as a sum of independent random vari-

ables and apply the central limit theorem, in order to obtain that cntP is asymptotically normal. However,

several previous works established the asymptotic normality of cntP for different fixed patterns P or for

an arbitrary P in a given set of patterns. For example, see Feller [65, 3rd ed., p.257] (for inversions,

i.e., when P = 21), Mann [109] (for descents, i.e., when P = 21), Fulman [76] (for both inversions and

descents), Goldstein [80] and Borga [29] (for consecutive patterns), Bóna [24] (for classical patterns)

and Hofer [84] (for vincular patterns). However, the number of occurrences of some simple bivincular

patterns is not normally distributed (see Section 3.4.3).

The recent works of Gaetz and Ryba [77] and Kammoun [93] establish normal limit laws on cer-

tain classes of permutations for classical and vincular patterns, respectively. In addition, Janson [90, 91]

showed that the number of pattern occurrences is not normally distributed when we sample from the per-

mutations avoiding a certain fixed pattern. Earlier, Janson, Nakamura and Zeilberger [92] initiated the

study of the same general question. Two articles proving asymptotic normality for random permutations

selected not according to the uniform measure are [41, 66]. Finally, some important works [16, 64, 92]

give central-limit theorems for certain joint-distributions of pattern occurrences. The listed articles use

various approaches, from the method of moments [146] to dependency graphs, Stein’s method (see [84,

Section 3] for overview of the last two methods) and the theory of U-statistics [89, Chapter XI].

In Section 3.4.1, we give a new proof of a lemma of Bóna, which was shown in [24] to imply the

asymptotic normality of cntP for any classical pattern P. To do that, he uses dependency graphs and the

so-called Janson dependency criterion, which are defined below.



39

Definition 1.54 (dependency graph). Let {Yn,k | k = 1, 2, . . . ,Nn} be an array of random variables. A

graph G is a dependency graph for {Yn,k | k = 1, 2, . . . ,Nn} if the following two conditions are satisfied:

1. There exists a bijection between the variables Yn,k and the vertices of G.

2. If V1 and V2 are two disjoint sets of vertices of G, so that there are no edges of G between V1 and

V2, then the two sets of random variables corresponding to V1 and V2 are independent.

The idea of the method of dependency graphs is that if the degrees of the vertices in any sequence

of dependency graphs, for a given family of variables, do not grow too fast, then the corresponding

variables behave as if independent and their sum is asymptotically normal [68]. Janson’s criterion gives

one sufficient condition for this asymptotic normality, quantifying that the degrees do not grow too

quickly.

Theorem 1.55 (Janson [88]). Let {Yn,k | k = 1, 2, . . . ,Nn} be an array of random variables, such that for

all n ≥ 1 and for all k = 1, 2, . . . ,Nn, the inequality |Yn,k| ≤ An holds for some real number An, and the

maximum degree of a dependency graph for {Yn,k | k = 1, 2, . . . ,Nn} is ∆n.

Set Yn B
k∑

i=1
Yn,k and σ2n B Var(σn). If there is a natural number m, so that

Nn∆
m−1
n (

An

σn
)m −−−→

n→∞ 0,

then

Yn −→
d

N(0, 1).
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In Section 3.4.2, we give a new interpretation of a lemma of Hofer [84] that is a generalisation of

the lemma of Bóna in [24]. Hofer used her lemma to establish the asymptotic normality of cntP for any

vincular pattern P. To do that, she also used Lemma 1.57 stated below. Before we formulate it, we need

to define the so-called Kolmogorov distance, which is a probability metric.

Definition 1.56 (Kolmogorov distance). Let FX and FY be the cumulative distribution functions of the

real-valued random variables X and Y . The Kolmogorov distance between X and Y is defined as

d(X,Y) B
∑
t∈R

|FX(t) − FY(t)|.

Lemma 1.57. Let (Xn)n∈N be a sequence of real-valued random variables and let Y be another real-

valued random variable. Then,

d(Xn,Y) −−−→
n→∞ N(0, 1) =⇒ Xn −→

d
0.

1.6 Distant patterns

In this section, we introduce another type of permutation patterns, which are investigated in Chap-

ter 5. Distant patterns (DPs) generalize the concept of classical patterns in a different way than the

vincular patterns introduced in Section 1.2 (Definition 1.25). While vincular patterns allow one to re-

quire no gap between the numbers in the permutation, corresponding to two consecutive letters of the

pattern, DPs allow arbitrary minimum requirements for the size of this gap. We will write □r to denote

a gap with at least r letters, with □ B □1.
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Definition 1.58 (distant patterns).

(i) A distant pattern of size k is a classical pattern σ of size k, for which we can have a symbol □r, for

some r ≥ 1, at each of the following k + 1 places: between each of the k − 1 pairs of consecutive

letters of σ, before its first letter or after its last letter.

(ii) An occurrence of the distant pattern σ in the permutation π is an occurrence πλ1πλ2 · · · πλk of the

corresponding classical pattern in π, such that if σi□
rσi+1 is a segment in σ, then λi+1 − λi > r.

Example 1.59. 12□23 is a distant pattern. 257 is an occurrence of 12□23 in the permutation 6253147

since red(257) = 123 and we have more than 2 numbers between 5 and 7 in this permutation. Mean-

while, 234 is not an occurrence of 12□23.

Any distant pattern can be written in the form

□r0q1□r1q2□r2 · · ·□rk−1qk□
rk ,

where each ri is a non-negative integer and q1q2 · · · qk ∈ S k. We will also consider tight constraints and

we will underline the corresponding part of the pattern in case of a tight constraint as, for example, in

1□423 to denote that we want to avoid the pattern 123 with gap size exactly 4 between the letters 1 and

2. DPs without any tight constraints will be called classical distant patterns, while DPs having at least

one tight constraint will be called vincular distant patterns. When all of the constraints for the gap sizes

in a distant pattern are tight, we will call this a consecutive distant pattern.
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Definition 1.60 (uniform distant patterns). Take a classical pattern q and require the minimal gap size

to be the same number r for all pairs of consecutive letters. We will denote this pattern by distr(q) and

we will call these uniform distant patterns.

Example 1.61. dist3(312) = 3□31□32.

Note that DPs generalize classical patterns since q = dist0(q) for any classical pattern q. Further-

more, one can write any vincular pattern as a vincular distant pattern and thus vincular distant patterns

generalize vincular patterns. Finally, when we say that a distant pattern has size n, we mean that the

number of its non-square letters is n. For example, 21□43 is a distant pattern of size 3.

1.6.1 Previous work related to distant patterns

The idea of arbitrary constraints for the gap sizes between any two consecutive pattern letters is not

new, even though not much has been written on the subject. The thesis of Ghassan Firro [70] defines a

notion of permutation patterns with gap constraints, which is more general than DPs, and unifies many

other popular pattern notations. He calls these patterns distanced patterns or d-patterns. The distanced

patterns described there also allow requiring a gap size to be at most some given number r. The thesis

itself enumerates the patterns of the kind xy□z using both a direct bijection and an analytical approach.

We have included this result in Section 4.3.1. The paper of Hopkins and Weiler [85] describes the

concept of uniform distant patterns under the name of gap patterns and obtains an important result

related to them, as a corollary of their work on pattern avoidance over posets. We state this corollary in

Section 4.3.2.

In his book dedicated to pattern avoidance [102], Kitaev discusses a few articles related to patterns

containing the □-symbol and he uses this symbol in the same way as we do. One such work mentioned
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in the book is by Hou and Mansour on the so-called Horse permutations [86]. There, the authors proved

that the permutations avoiding both the classical pattern 132 and the pattern 1□23 are in one–to–one

correspondence with the so-called Horse paths.

In [98], Kitaev introduces partially ordered patterns (POPs) and partially ordered generalized pat-

terns (POGPs) which further generalize classical DPs (respectively, vincular DPs). While in classical

patterns, all of the letters form one totally ordered set (e.g. in 123, 1 < 2 < 3), in POPs this set is par-

tially ordered. In an occurrence of a distant pattern, any element at the place of a □ is incomparable to

any other element, which shows us that POPs (and POGPs that allow tight constraints) are indeed gen-

eralizations. If we have a classical distant pattern or a vincular distant pattern, we could easily write it as

a POP (respectively, POGP) by replacing each square with a letter in its own group. POPs were studied

in the context of permutations, words and compositions in a series of papers [83, 97–102] including a

recent work [78] of Gao and Kitaev where a systematic search of connections between sequences in the

Online Encyclopedia of Integer Sequences (OEIS) and permutations avoiding POPs of size 4 and 5 was

conducted. The work of Claesson [38], generalizing previous results of Callan [34], studies avoidance

of non-consecutive occurrence of a pattern, and this has connections with both POPs and DPs. Another

generalization of the DPs are the so-called place-difference-value patterns [103].

1.7 Summary of the new results in the thesis

In Chapter 2, we consider sorting by special types of queues, called shuffle queues, that can rearrange

their content by applying permutations corresponding to different shuffling methods. We obtain that

sorting by a queue that can reverse its content is equivalent to sorting by a deque. We also show that

the set of permutations that can be sorted by cuts, if the queue must be unloaded after a permutation



44

is applied, is the set of the 321-avoiding separable permutations. Generalization of this fact is also

obtained. Next, in Section 2.4, we investigate sorting by the same queue in series. The chapter continues

with results on pop shuffle queues, which are shuffle queues that are unloaded by each pop operation.

Finally, we formulate and investigate an astonishing conjecture, which states that one can sort the same

number of permutations of a given size by using the pop shuffle queues for the well-known In-shuffle

and Monge shuffling methods, defined in Section 1.4.1.

In Chapter 3, we study the class of statistics on permutations defined in Section 1.5 and their higher

moments. After we adapt the approach of Chern, Diaconis, Kane and Rhoades to permutations, we

show that the moments of any statistic in this class is a linear combination of factorials with constant

coefficients. Using a corollary of this result, we obtain a new proof of the central limit theorem (CLT)

for the number of occurrences of classical patterns, which uses a lemma of Burstein and Hästö. We give

a simple interpretation of this lemma and an analogous lemma that would imply the CLT for the number

of occurrences of any vincular pattern. Furthermore, we obtain explicit formulas for the r-th moment of

the descents and the minimal descents statistics. The latter is used to give a new direct proof of the fact

that we do not necessarily have asymptotic normality in the case of bivincular patterns.

Chapter 4 deals with avoidance of distant patterns (DPs), defined in Section 1.6. We describe a

bijection between the permutations avoiding inversions with elements at distance more than a given

number r and the permutations of size n for which any two elements in a cycle differ by at most r.

We also sketch an approach to obtain the generating function for the number of permutations avoiding

one of the two not yet classified DPs of size three and constraint on each gap size not exceeding one.

The approach is based on the block-decomposition method initiated in [115]. Thereafter, we deduce
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a surprising relation between the sets of permutations avoiding the classical patterns 123 and 132 by

looking at a class of DPs with tight gap constraints. Furthermore, we show how one can use DPs to

give combinatorial proofs to two conjectures of Kuszmaul. We also investigate some analogues of the

Stanley-Wilf former conjecture for DPs.

Chapter 5 lists some important further questions related to the presented results.



CHAPTER 2

SORTING BY SHUFFLING METHODS AND A QUEUE

In this chapter, we relate sorting devices and shuffling methods by considering sorting using special

type of queues, called shuffle queues, which can rearrange their content by applying permutations from

a given predefined set over it. We will consider collections of permutations corresponding to some

popular shuffling methods.

2.1 Definitions

A shuffling method Σ is defined by a family of sets of permutations

FΣ = {Πn
Σ ⊆ S n | n = 2, . . . }

that one can apply over the content of a sorting device when using the method. Note that Πn
Σ contains

permutations of size n, for every n ≥ 2. We will also assume that idn < Π
n
Σ , for every n ≥ 2 and we will

refer to FΣ as the permutation family of the method Σ. We will also use the notation (Πk
Σ)

−1 B {σ−1 |

σ ∈ Πk
Σ}. An example of a shuffling method is shuffling by cuts defined in Section 1.4.

For a given shuffling method Σ, we consider a non-deterministic sorting device QΣ for which

at any given step one can apply up to three possible operations over the current configuration s =

(sinp, sdev, sout). Denote the next configuration by s. The three operations are described below.

1. Push: Move the first element x of the input sinp = xs ′inp to the content of the device. We get

s = (s ′inp, sdevx, sout). One can apply this operation only if sinp , ε.

46
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2. Pop: Move the first element y of the content of the device sdev = ys ′dev to the output. We get

s = (sinp, s ′dev, souty). One can apply this operation only if sdev , ε.

3. Shuffle: Choose a permutation σ ∈ Πm
Σ and apply it over the content of the device sdev, where

|sdev| = m. We get s = (sinp, σsdev, sout). One can apply this operation only if m ≥ 2 and if the

last operation that has been applied is not a shuffle operation.

Note that the device QΣ functions as a queue since it can receive entries on one of its ends and

release entries on the other end. In addition, the content of this queue can be shuffled and thus we will

call it a shuffle queue. When a certain permutation is chosen to be applied on a shuffle operation, we

will say that the shuffle operation is associated with this permutation.

Also, note that the restriction to not have two consecutive shuffle operations is reasonable since if

one allows applying multiple consecutive shuffle operations for a shuffle queue QΣ , then sorting by this

queue would be equivalent to sorting by a queue QΣ ′ , for which two consecutive shuffle operations are

not allowed. Here, Σ ′ would be the shuffling method for which Πn
Σ ′ = ⟨Π

n
Σ⟩, for every n ≥ 2, where ⟨T ⟩

denotes the subgroup generated by the set T .

2.1.1 Devices of type (i) and type (ii)

The current chapter focuses on two natural variations of the devices QΣ that will be called shuffle

queues of type (i) and type (ii). They are obtained after imposing two additional restrictions.

(i) The entire content of the device must be unloaded after each shuffle.

Denote the corresponding sorting device by Q′Σ .

(ii) The entire content of the device must be unloaded by each pop operation.
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Denote the corresponding sorting device by Qpop
Σ . This is the pop-version of the device QΣ in

analogy to the pop version of the stack-sorting device first considered by Avis and Newborn in

[12]. We will also call them pop shuffle queues.

Consider the device of type (i), Q′cuts. Example 2.1 given below shows one possible sequence of

configurations for Q′cuts and the corresponding operations when sorting the permutation 213564 with

this device. Recall that we call this iteration of Q′cuts over 213564. Each configuration (sinp, sdev, sout)

is written as a column.

Example 2.1. Iteration of Q′cuts over 213645.



213645

ε

ε


push
−−−→



13645

2

ε


push
−−−→



3645

21

ε


shuffle
(cut)

−−−−→
+unload



3645

ε

12


push
−−−→



645

3

12



pop
−−→



645

ε

123


push
−−−→



45

6

123


push
−−−→



5

64

123


push
−−−→



ε

645

123


shuffle
(cut)

−−−−→
+unload



ε

ε

123456


This device requires that we unload the entire content of the device after each shuffle operation. Also,

note that this is a non-deterministic device and one can choose to apply one among several different

permutations on each shuffle operation. Consider the device of type (ii), Qpop
cuts. Below is shown one

possible iteration of Qpop
cuts.
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Example 2.2. Iteration of Qpop
cuts over 41325.



41325

ε

ε


push
−−−→



1325

4

ε


push
−−−→



325

41

ε


push
−−−→



25

413

ε


shuffle
(cut)

−−−−→


25

341

ε


push
−−−→



5

3412

ε



shuffle
(cut)

−−−−→


5

1234

ε


pop

(unload)
−−−−−→



5

ε

1234


push
−−−→



ε

5

1234


pop

(unload)
−−−−−→



ε

ε

12345


The device in Example 2.2 requires that we unload the entire content of the device by each pop

operation, but we do not have to do that after a shuffle operation.

2.1.2 Motivation behind shuffle queues and cut-sorting

Here, we describe some additional motivation to consider sorting by shuffle queues, as well as their

variations of types (i) and (ii). We also motivate the investigation of sorting by cuts, which is a main

focus of the present work.

In Section 2.2, we show that sorting by a deque is equivalent to sorting by a simple shuffle queue.

Perhaps, one could find shuffle queues that mirror sorting by other popular devices. This would give

new perspectives and might help solve certain problems related to these devices. In addition, sorting by

Qcuts has a simple interpretation in terms of railway switching networks, which was the way used by

Knuth in [104] to illustrate sorting by stack, queue and deque.
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Example 2.3. (Knuth’s railroad interpretation for Qcuts) Add a circular railroad extension connecting

the beginning and the end of a railroad queue, as in Figure 9 below.

Qcuts

InputOutput

Figure 9: The shuffle queue Qcuts represented as a railway switching network.

Suppose that a railroad car cannot enter or leave the queue (no pushes or pops are allowed), while there

is a car in the extension. Thus we have a queue that can move a group of consecutive elements from its

beginning to its end. This is exactly what one can do by cuts.

We also show that one can sort every permutation using Qcuts (Corollary 2.22 gives an even stronger

statement). Thus, it is reasonable to ask which permutations can be sorted by cuts and by other methods

if we consider the two natural restrictions defining shuffle queues of types (i) and (ii), namely, to unload

the content after each shuffle or with each pop, respectively. Sorting by the shuffle queue of type (i),

Q′cuts corresponds to sorting by the railway switching network shown at Figure 9, with the additional

requirement that we have to unload the queue after each use of the extension.

The device Q′cuts is non-deterministic and we show that by using this device one can sort a subset

of the separable permutations defined in Section 1.1.2. Therefore, there exists a deterministic proce-
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dure that sorts all of the Q′cuts-sortable permutations in linear time, since we have such a procedure for

the separable permutations [30]. This is something desirable when considering sorting devices on a

restricted class of permutations since the best possible time complexity for a sorting algorithm over all

permutations is O(n log n). The popular greedy stack-sorting gives such a linear deterministic proce-

dure for stack. The PhD thesis of Luca Ferrari [69, Section 3.4] shows that such a procedure exists for

input-restricted and output-restricted deques, and does not exist for a standard deque.

Sorting by cuts turns out to be an important problem connected to genome rearrangements and an

object of extensive study from the algorithms community. For more details, we refer to the introduction

of [82]. In particular, if we have two permutations representing sequences of genes, we want to find

the shortest sequence of operations in a given set that transforms one of the permutations into the other.

Assuming that one of the permutations is the identity, the problem is to find the shortest way of sorting a

permutation using the fixed set of operations, e.g., cuts and others. The article of Eriksson et al. [60] is

one work motivated by genome rearrangements that contains results on sorting by cuts which are closest

to the bounds we obtain in Theorems 2.14 and 2.18. They establish bounds for the maximum number

of cuts one must apply when sorting a permutation, while we give bounds for the maximum number of

iterations ofQ′cuts needed to sort a permutation. The two problems are different, since during an iteration

one can apply multiple cuts. Several other articles addressing sorting by cuts together with additional

operations, e.g. possible reversions, are listed in [42].

Finally, considering sorting by shuffle queues of type (ii) (pop-shuffle queues) is reasonable since

pop-sorting has been sufficiently considered in the past (see [102, Chapter 2.1.4]). Pop-shuffle queues

require a natural additional constraint and we prove some interesting results involving them. In addi-
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tion, we formulate a surprising conjecture relating the shuffle queues of type (ii) for two very different

shuffling methods (see Section 2.5.2).

2.2 Shuffle queues equivalent to deque and stack

As we explained in Section 2.1.2, one motivation to consider shuffle queues is that sorting by deque

turns out to be equivalent to sorting by the shuffle queue of a very simple shuffling method that can just

reverse its content.

Definition 2.4. (the shuffling method rev)

∀n ≥ 2 : Πn
rev = {n(n − 1) · · · 21}.

For a sequence w, the reverse of w will be denoted by wr, as in Chapter 1.

Definition 2.5. Sorting devices U and V are equivalent if, for every n ≥ 1,

S n(U) = S n(V).

We denote this by U � V.

Theorem 2.6. Deq � Qrev.

Proof. [First part: S n(Deq) ⊆ S n(Qrev)] Let π ∈ S n(Deq). Then, there exists an iteration of Deq over

π that sorts it. Take one such iteration itr, determined by a sequence of the operations I,O, I and O. Using

this sequence, we can easily construct an iteration ofQrev that sorts π, as follows. Instead of the operation

shuffle over Qrev, we will write reverse. Replace I by push, O by pop, I by reverse, push, reverse
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and O by reverse, pop, reverse. This yields a list of operations defining an iteration over Qrev, which

modifies π in the exact same way as itr has modified π over Deq.

[Second part: S n(Qrev) ⊆ S n(Deq)] If s is a sequence of operations over Deq, then denote by s the

complement sequence obtained by swapping I ↔ I and O ↔ O. Take π ∈ S n(Qrev) and a sequence of

operations s corresponding to an iteration of Qrev that sorts π. The sequence s consists of push, pop and

reverse operations. Replace every push by an I and every pop by an O to obtain a sequence s ′. Then,

for each reverse operation in s ′, from left to right, replace the sequence of operations to its left by its

complement sequence and then delete that reverse operation. We claim that you will obtain a sequence

of operations s ′′ for the device Deq that sorts π. For example, suppose that

s = push, push, reverse, pop, reverse, push, pop, push, reverse, pop, pop.

Then,

s ′ = I, I, reverse,O, reverse, I,O, I, reverse,O,O.

We have three reverse operations in s ′. If we follow the described procedure, we get:

s ′⇝ I, I,O, reverse, I,O, I, reverse,O,O

⇝ I, I,O, I,O, I, reverse,O,O

⇝ I, I,O, I,O, I,O,O =: s ′′.
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We will show that the iteration over Deq corresponding to s ′′ always sorts π. Assume that s (respec-

tively, s ′) has r reverse operations denoted by revi (respectively, rev ′i ), for i ∈ [r]. Furthermore, while

transforming s ′ to s ′′, let the sequence of operations preceding revi, before replacing it with its comple-

ment sequence, be denoted by s(i), for i ∈ [r]. Note that its complement sequence is denoted by s ′
(i), for

i ∈ [r]. Our goal is to prove that s(i) transforms π in the same way as s ′
(i), for i ∈ [r].

We will proceed by induction. The sequence s(1) transforms π in the same way as s ′
(1)

, since s(1)

is the complement of s ′
(1)

with a reverse operation added at the end and it is easy to see that if s is a

sequence of operations over Deq that produces output π ′ on input π, then s produces (π ′)r on input π.

Therefore, if s ′
(1)

produces output π ′
(1)

on input π, then s(1) produces the same output ((π ′
(1)
)r)r = π ′

(1)

on input π. Assume that the statement holds for all i ≤ t and that t < r. By the induction hypothesis, s ′
(t)

transforms the input π in the same way as s(t). To obtain s ′
(t+1) and s(t+1), respectively from s ′

(t) and s(t),

we should first add the same sequence of push and pop operations. Then we take the complement of s ′
(t)

and add a reverse operation to s(t), respectively. We obtain the sequences s ′
(t+1) and s(t+1) that obviously

transform the input π in the same way. If t = r, then we just add the same sequence of push and pop

operations to s ′
(t) and s(t) to obtain s and s ′′, respectively. Therefore, these two sequences transform π

in the same way and thus the iteration over Deq corresponding to s ′′ also sorts π. □

Once we know that Theorem 2.6 holds, a reasonable question to ask is whether there exists a shuffle

queue that is equivalent to a stack. Recall that the device stack is denoted by St.

Theorem 2.7. There is no shuffling method Σ, such that St � QΣ .
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Proof. Suppose that such a shuffling method Σ exists. Then, we must have S n(QΣ) = Avn(231).

Therefore, since 21 ∈ Av2(231), we must have 21−1 = 21 ∈ Π2Σ . We also have 231 < S 3(QΣ). If

321 ∈ Π3Σ , then we will be able to sort 231 by the following iteration:



231

ε

ε


push
−−−→



31

2

ε


push
−−−→



1

23

ε


shuffle
−−−−→
(by 21)



1

32

ε



push
−−−→



ε

321

ε


shuffle
−−−−−→
(by 321)



ε

123

ε


pop
−−→



ε

ε

123


Thus 321 < Π3Σ . However, we must be able to sort 321 by QΣ . Consider an input 321. In order

to obtain 123, a pop operation must not be performed before the first three pushes. Note that after

pushing the first two elements, one can either switch them or not, since 21 ∈ Π2Σ . Therefore, after

pushing the third element 1, one could either have 231 or 321 in the device. Thus we can sort 321 only

if 321−1 = 321 ∈ Π3Σ or if 231−1 = 312 ∈ Π3Σ . However, we saw that 321 < Π3Σ . In addition, 312 < Π3Σ ,

since otherwise we would be able to sort 231. This is a contradiction. □

In Section 5.1, we ask a more general question related to shuffle queues equivalent to devices that

can sort all the permutations in a given permutation class.



56

2.3 Sorting by cuts

One of the simplest shuffling methods is shuffling by cuts. Its permutation family is given in Section

1.4. Some previous works containing results on shuffling using cuts are [46, 76]. The significance of

sorting by Qcuts and Q′cuts is discussed in Section 2.1.2. Sorting by Qcuts turns out to be trivial since one

can sort every permutation with this shuffle queue. A more general statement is proved at the beginning

of Section 2.5. In this section, we investigate sorting by Q′cuts. Example 2.1 in Section 2.1.1 shows one

possible iteration of this device.

First, we determine S n(Q
′
cuts), with the help of the following Lemma 2.8. We will call it the set

of cut-sortable permutations. We obtain that this is the set of the separable permutations avoiding the

pattern 321.

Lemma 2.8. A permutation π ∈ S n(Q
′
cuts) if and only if it has one of the forms:

1. π = idr ⊕ π
′, for some 1 ≤ r ≤ n and π ′ ∈ S n−r(Q

′
cuts), or

2. π = (idr1 ⊖ idr2) ⊕ π
′′, for some r1, r2 ≥ 1, where r B r1 + r2 ≤ n and π ′′ ∈ S n−r(Q

′
cuts).

Proof. Let π = π1 · · · πn ∈ S n(Q
′
cuts). Consider an iteration of Q′cuts over π that sorts it. The sequence

of operations for this iteration must contain at least one pop operation. Let the first pop operation be

performed after we have pushed r elements in the device (1 ≤ r ≤ n), i.e., the elements π1, . . . , πr. The

output string after this pop operation must be idr. We can have at most one shuffle operation before the

first pop operation, and this shuffle must be right before the pop. If we do not have such a shuffle, then

the content of the device has not been modified, i.e., π1 · · · πr = idr. Thus, π = idr ⊕ π
′ and the rest of

the iteration sorts π ′. Therefore, π ′ ∈ S n−r(Q
′
cuts). If a shuffle has been performed before the first pop,
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then before this shuffle, the device must contain one of the permutations in the set (Πr
cuts)

−1 = Πr
cuts.

Each permutation in Πr
cuts can be written as idr1 ⊖ idr2 for some r1, r2 ≥ 1, such that r B r1 + r2 ≤ n.

Therefore, π = (idr1 ⊖ idr2)⊕ π
′′ for some permutation π ′′ ∈ S n−r(Q

′
cuts) since π ′′ is sortable by the rest

of the considered iteration. Conversely, one can directly check that any permutation in one of the two

listed forms belongs to S n(Q
′
cuts). □

π ′

(a) Cut-sortable permutations that require
no shuffle before the first pop.

π ′′

(b) Cut-sortable permutations that require
a shuffle before the first pop.

Figure 10: The two kinds of cut-sortable permutations.

An equivalent formulation of Lemma 2.8 is that the set S n(Q
′
cuts) consists of the permutations that

can be obtained by direct sums of the trivial permutation 1 and permutations of the kind idr1 ⊖ idr2 . The

fact that S n(Q
′
cuts) is a permutation class follows directly from a simpler version of the observation used

to obtain Proposition 1 in [1]. With the next theorem, we find this class.
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Theorem 2.9. The permutations sortable by Q′cuts are the 321-avoiding separable permutations [118,

A034943]; i.e.,

S n(Q
′
cuts) = Avn(321, 2413, 3142). (2.1)

Proof. Let T B {321, 2413, 3142}.

[First part: π is cut-sortable ⇒ π ∈ Avn(T )] We will use induction, Lemma 2.8 and the fact that if

π = x ⊕ y for some permutations x, y and π has an occurrence of a pattern in T , then this occurrence

is either in the part of π corresponding to x or in the part corresponding to y. This will be called the

indecomposable property of T .

The empty permutation belongs to Av0(T ). Let n > 0. Assume, inductively, that any cut-sortable

permutation of size m < n belongs to Avm(T ). Suppose that π ∈ S n is cut-sortable and π = idr ⊕ π
′,

for some 1 ≤ r ≤ n and π ′ ∈ S n−r(Q
′
cuts), as in the first form described in Lemma 2.8. Then π ′ ∈

Avn−r(T ) by the inductive hypothesis and idr has no occurrence of a pattern in T . Therefore, by the

indecomposable property of T , we have π ∈ Avn(T ).

Now suppose that π is in the second form described in the lemma, i.e., that π = (idr1 ⊖ idr2) ⊕ π
′′,

for some r1, r2 ≥ 1, where r B r1 + r2 ≤ n and π ′′ ∈ S n−r(Q
′
cuts). Then, π ′′ ∈ Avn(T ) by the induction

hypothesis and one can check easily that idr1 ⊖ idr2 has no occurrence of a pattern in T . Because of the

indecomposable property of T , we must have π ∈ Avn(T ).

[Second part: π ∈ Avn(T ) ⇒ π is cut-sortable] We will use induction, again. The empty per-

mutation is the only permutation in Av0(T ), and it is cut-sortable. Let n > 0 and π = π1 · · · πn ∈

Avn(T ). Consider the consecutive segment 12 · · · r in π for the greatest possible value of r, where
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π = π1 · · · πl12 · · · rπr+l+1 · · · πn. If π1 · · · πl is the empty permutation, then π has the first form from

Lemma 2.8. If not, then l ∈ [1, n − r + 1] and we will show that π has the second form from the lemma.

First, note that π1 · · · πl must be increasing to avoid a 321 pattern in π. Assume that π1 · · · πl ,

(r + 1)(r + 2) · · · (r + l) and let u ≥ 1 be minimal, such that πu , r + u. We must have that u ∈ [1, l],

r+l+1 ≤ n, r+u ∈ {πr+l+1, · · · , πn} and πl > r+u. If u > 1, then π1 = r+1 and (r+1)πl1(r+u) would

form a 2413 pattern in π, which will contradict π ∈ Avn(T ). Consider u = 1. Note that πr+l+1 , r + 1

since r was maximal. In fact, πr+l+1 > r + 1. If πr+l+1 < πl, then πlπr+l+1(r + 1) would form a 321

pattern, while if πr+l+1 > πl, then πl1πr+l+1(r+1) would form a 3142 pattern. Therefore, we must have

π1 · · · πl = (r + 1)(r + 2) · · · (r + l) and thus π has the second form from Lemma 2.8. □

In [117], Martinez and Savage showed that an B avn(321, 2413, 3142) satisfies

an = 3an−1 − 2an−2 + an−3,

with initial conditions a1 = 1, a2 = 2, a3 = 5. This is sequence A034943 in the OEIS [118]. The

recurrence implies that an = Θ(dn), where the growth rate d ≈ 2.32.

Next, we prove a generalisation of Theorem 2.9.

Definition 2.10. (irreducible permutation) An irreducible permutation π ∈ S n is one for which the first

j elements, i.e., those in [ j], do not occupy the first j positions, for any 0 < j < n.

Example 2.11. When n = 3, the only irreducible permutations are 231, 312 and 321 since they do not

have 1, 12 or 21 as a prefix.
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Denote by IRRn the set of the irreducible permutations of size n. They are enumerated by sequence

A003319 in [118].

Theorem 2.12. If Πk
Σ ⊆ IRRk for every k ≥ 2 and bk B |Πk

Σ |, then

pn(Q
′
Σ) = 1+

∑
k1+···+kl=n−u

ki≥2,u≥0

(
u + l

l

) l∏
j=1

bk j . (2.2)

Proof. Recall that a subsequence πaπa+1 · · · πb of π, for which the indices a, a+1, . . . , b are consecutive

numbers is called a segment of π. We denote it by [a, b]. Note that when we use Q′cuts, the entire

content has to be unloaded after each shuffle and the segments of the input that were not shuffled are

kept the same in the output. Thus the output after an iteration of Q′cuts is uniquely determined by

the segments of the input that were shuffled and the corresponding permutations chosen for each of

the shuffle operations. For instance, the output id6 of the iteration of Q′cuts shown in Example 2.1 is

determined by the sequence of segments ([1, 2], [4, 6]) of the input 213645 that were shuffled and the

sequence of permutations (21, 231) that were applied on the given segments. We will use that one can

make the same observation for any Q′Σ with the given properties.

Denote the set of the possible pairs of sequences of segments and permutations, for an input of size

n and a shuffling method Σ, by SSPΣn . For every n ≥ 2 and every element (s, q) ∈ SSPΣn , the segments

in s are in lexicographical order and do not overlap with each other since we shuffle these segments

from left to right. We will first show that |SSPΣn | is equal to the expression in the right-hand side of

Equation (2.2). Then, we will give a bijection between the sets S n(Q
′
Σ) and SSPΣn .
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[Finding |SSPΣn |] Assume that x = (s, q) ∈ SSPΣn and that s consists of l shuffled segments. Only

one such x exists, if l = 0. Let l ≥ 1. Denote the sizes of the l shuffled segments by k1, k2, . . . , kl, where

k j ≥ 2 for every j ∈ [1, l], and let their sum be n − u for some u ≥ 0. For instance, if n = 8, l = 2 and

s = ([2, 3], [5, 7]), then k1 = 2, k2 = 3 and n − u = 5. In general, if the numbers l, n − u, k1, . . . , kl

are given, then in order to determine the sequence of segments s, one should distribute the u remaining

elements in the set of l + 1 spaces: one before each of the l segments and one after all of the segments.

For every such choice, we obtain a different sequence of segments s. The number of these choices is the

number of ways to distribute u indistinguishable balls into l + 1 boxes that is
(u+(l+1)−1

(l+1)−1

)
=

(
u+l

l

)
. Then,

if q = (q1, . . . , ql), the permutation q j can be any of the bk j permutations in Πk j
Σ for every j ∈ [1, l]. Thus

q can be determined in
l∏

j=1
bk j ways. In total, we obtain the right-hand side of Equation (2.2).

[S n(Q
′
Σ) → SSPΣn ] Let π ∈ S n(Q

′
Σ). Then, there exists at least one iteration that sorts π. Assume

that π can be sorted by two different iterations it1 and it2, corresponding to x1, x2 ∈ SSPΣn , where

x1 = (s1, q1), x2 = (s2, q2) and x1 , x2. Assume that s1 = s2. Then, q1 , q2. However, we can easily

see that this is not possible. Let [r, r + k] be an arbitrary segment in s1, and respectively in s2. If σ1 and

σ2 are the two permutations in q1 and q2, respectively, that have to be applied on this segment, then we

must have σ1 = σ2 = (πr · · · πr+k)
−1. Thus q1 = q2. Therefore, we must have s1 , s2.

Let [r1, r1+k1] be the last segment in s1 and let [r2, r2+k2] be the last segment in s2. Assume also that

σ1 and σ2 are the last permutations in q1 and q2, respectively. We saw that if [r1, r1+ k1] = [r2, r2+ k2],

then we must have σ1 = σ2. However, s1 , s2. Therefore, without loss of generality, assume that

[r1, r1 + k1] , [r2, r2 + k2] and that r1 ≤ r2. If r1 = r2, then assume for concreteness that k1 < k2 (see

Figure 11).
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1 r1=r2 r1+k1 r2+k2 n

Figure 11: The case r1 = r2.

Iteration it1 permutes the elements of the segment [r1, r1 + k1] in π. Hence it2 does the same. This

implies that σ2 fixes [k1 + 1] and thus σ2 < IRRk2+1, which is a contradiction. If r1 < r2, then it suffices

to look at the following two cases (see Figure 12 and Figure 13).

1. r2 ≤ r1+k1. Then σ1 fixes [r2 − r1]. Indeed, suppose that σ1(u) = v, where u ∈ [r2 − r1] and

v > r2− r1. This means that it1 moves πr1+u−1 to position r1+ v−1 ≥ r1+(r2− r1+1)−1 = r2.

However, it2 moves πr1+u−1 to a position smaller than r2. Therefore, σ1 fixes [r2 − r1] and σ1 is

not irreducible, which is a contradiction.

1 r1 r2 r1+k1 r2+k2 n

Figure 12: The case r1 < r2 and r2 ≤ r1 + k1.

2. r2 > r1+k1. Since it1 sorts π, we must have σ2 = idk2+1, which is not possible.
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1 r1 r1+k1 r2 r2+k2 n

Figure 13: The case r1 < r2 and r2 > r1 + k1.

We see that it is not possible to sort π by two different iterations corresponding to two different elements

of SSPΣn . Therefore, for every π ∈ S n(Q
′
Σ) there exists a unique x ∈ SSPΣn corresponding to an iteration

that sorts π.

[SSPΣn → S n(Q
′
Σ)] It remains to show that every x ∈ SSPΣn corresponds to a set of iterations of Q′Σ

sorting exactly one permutation π. Let x = (s, q), where s = (s1, . . . , sl) and q = (σ1, . . . , σl). Take

idn, and go backwards by applying consecutively σ−1j to the segment s j, for j = l, l − 1, . . . , 1. We will

obtain a unique permutation π that is sortable by any iteration corresponding to x. □

Note that when Σ = cuts, we have Πk
cuts ⊆ IRRk and bk = |Πk

cuts| = k − 1, for every k ≥ 2. Thus,

one can use Equation (2.2) to compute pn(Q
′
cuts).

2.4 Permutations of higher cost

Obviously, not all π ∈ S n are sortable by Q′cuts. However, one can consider sorting in series for this

device (see Section 1.3.2.1). Recall that when we sort in series, we use the output after one iteration

over the device as an input to the next iteration. Denote the set of permutations that one can obtain after

k iterations of Q′cuts over a permutation π ∈ S n by (Q′cuts)
k(π).



64

Definition 2.13 (permutation cost). The cost of π is the minimum number of iterations needed to sort π

using the device Q′cuts; i.e.,

cost(π) B min{m | idn ∈ (Q
′
cuts)

m(π)}.

It is not difficult to obtain an upper bound for cost(π). Indeed, one can move a single element to

its correct position using only one iteration. In particular, if the input permutation is π = 12 · · · (i −

1)πi · · · π j−1iπ j+1 · · · πn, then one can perform an iteration consisting of only one cut right before i, after

getting the subsequence πi · · · π j−1i into the device. Such an iteration will move i to its correct position.

Consecutive movements of i, i+1, . . . , n to their correct positions will sort the permutation. Therefore,

cost(π) ≤ n. This upper bound is improved significantly with the theorem given below.

Theorem 2.14. For every π ∈ S n, we have cost(π) ≤ ⌈n
2⌉, for all n ≥ 1.

Proof. A computer simulation shows that the statement is true for 1 ≤ n ≤ 10. Let n ≥ 11 and let us

assume, inductively, that the statement holds for all n ′ < n. The main observation that will be used is that

if we have k + 1 consecutive numbers in [n], forming a segment in π, then we can treat them as a single

element and apply the induction hypothesis for n − k. Two more observations will be substantially

used that describe cases when we can modify π with one iteration over Q′cuts and then use the main

observation above. A third observation for the case when π is a direct sum of other permutations will

also be needed. These three observations are listed below with a brief justification for each of them:

(1) If a ∈ [3, n] and the numbers a− 1, a− 2 occur before a in π, then there exists π ′ ∈ Q′cuts(π), such

that π ′ = · · · (a − 2)(a − 1)a · · · .
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Proof: Assume that π = π1 · · · (a− 1) · · · (a− 2)πh · · · a · · · πn for some h > 2. If (a− 2) is before

(a − 1), then we can proceed in a similar way. We can perform the following two cuts with one

iteration of π over Q′cuts: Cut the segment (a− 1) · · · (a− 2) after (a− 1) and the segment πh · · · a

before a. A permutation π ′ with the desired property is obtained. If a = πh, then we will not need

the second cut.

(2) Assume that a, a + 1, b, b + 1 ∈ [n] are four different numbers. If a and a + 1 occur before b and

b + 1 in π, then there exists π ′ ∈ Q′cuts(π), such that π ′ = · · · a(a + 1) · · · b(b + 1) · · ·

Proof: If necessary, we can move a + 1 to appear immediately after a with a single cut, and b + 1

to appear immediately after b with another cut. Since a and a + 1 occur before b and b + 1, we

can perform the two cuts within one iteration.

(3) Assume that π = σ1 ⊕ σ2 ⊕ · · · ⊕ σk. Then,

cost(π) ≤ max{cost(σ1), cost(σ2), . . . , cost(σk)}.

Proof: Within one iteration, one may independently transform each of the parts of π correspond-

ing to σ1, σ2, . . . , σk. Thus, if m = max{cost(σ1), . . . , cost(σk)}, then π can be sorted with m

iterations.

We continue with the proof. Let xy denote the last two elements of π. Observation (1) implies that

unless y = 1 or y = 2, we will be able to transform π to a permutation π ′ containing the segment

(y − 2)(y − 1)y with just one iteration. Looking at this segment as a single element and applying the

induction hypothesis for n−2would give us cost(π) ≤ 1+⌈n−2
2 ⌉ = ⌈

n
2⌉, which is what we want. Assume
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that y = 1. Obviously, if x , 2, 3, we will be able to apply observation (1) again with a = x and obtain

the bound via the same calculation. If x = 2, then since n ≥ 4, the numbers 3 and 4 will precede 1

and 2 in π which allows us to use observation (2) and obtain the permutation π ′ described there, with

one iteration of π over Q′cuts. Treating both 1, 2 and 3, 4 as a single element and applying the induction

hypothesis gives us the same calculation and implies the desired result, again. Therefore, xy = 31 is the

only case that remains to be considered if y = 1.

If y = 2, then if x = 1, we can move the last two elements xy = 12 to the beginning of the

permutation with an iteration consisting of a single cut to obtain a permutation π ′ = 12⊕ π ′′. Applying

observation (3) to π ′ and the induction hypotheses for π ′′ gives cost(π) ≤ 1 + cost(π ′′) ≤ 1 + ⌈ n−2
2 ⌉ ≤

⌈ n
2⌉. Therefore, we may assume that if y = 2, then x , 1. If x , 3, 4, then we can obtain the result using

observation (1), as before. If x = 3, then since n ≥ 5, we will be able to apply observation (2) for 2, 3

and 4, 5. Therefore, xy = 42 is the only case that remains to be considered if y = 2.

We saw that it suffices to look at those permutations π having last two elements, xy = 31 or xy =

42. Following the same reasoning, we can easily obtain that it suffices to only look at permutations π

beginning either with n(n − 2) or (n − 1)(n − 3). The only difference is that an observation analogous

to (1) shall be used dealing with the cases when a − 2 precedes both a − 1 and a. Hence, we have four

cases, in total. We will show how we can complete the proof in only one of them, namely when π begins

with n(n−2) and finishes with 42. The proofs in the other 3 cases can be completed following the same

reasoning.

Let π = n(n− 2) · · · 42. Then, we can assume that n− 3 and n− 1 occur after both 1 and 3, because

otherwise we will be able to apply observation (2) for certain pairs of elements. For concreteness, let us
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take 3 to be before 1 and n−1 to be before n−3. The following argument works regardless of this order.

We can assume that π = n(n − 2) · · · 3 · · · 1 · · · (n − 1) · · · (n − 3) · · · 42. Below, we show a particular

way to transform π by four iterations. We give the output at the end of each iteration. The reader may

try to find the exact cuts applied in these iterations.

n(n − 2) · · · 3 · · · 1 · · · (n − 1) · · · (n − 3) · · · 42

n(n − 2) · · · (n − 1) · · · (n − 3) · · · 3 · · · 142

· · · (n − 1)n(n − 2)(n − 3) · · · 3142

3142 · · · (n − 1)n(n − 2)(n − 3) · · ·

3142 · · · (n − 1)n(n − 2)(n − 3)

Therefore, with four iterations, π can be transformed to π ′ = w1π ′′w2, where |π ′′| = n−8, |w1| = 4,

|w2| = 4 and π ′ = red(w1) ⊕ red(π ′′) ⊕ red(w2). Recall that n ≥ 11 and thus |π ′′| = n − 8 ≥ 3,

which means that cost(π ′′) ≥ 2. In addition, cost(σ) = 2, for any σ ∈ S 4. Therefore, observation

(3) applied over π ′ and the induction hypothesis for π ′′ gives us cost(π ′) ≤ cost(π ′′) ≤ ⌈ n−8
2 ⌉, which

implies cost(π) ≤ 4+ cost(π ′) ≤ 4+ ⌈ n−8
2 ⌉ = ⌈

n
2⌉. □
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Theorem 2.14 gives a tight upper bound for the cost function since there exist permutations in S n

having cost ⌈ n
2⌉. For instance, cost(83527461) = 4. The best absolute lower bound is obviously 0 since

cost(idn) = 0 for every n. Let M(n) B max
π∈S n

cost(π) be the maximal cost of a permutation of size n.

Theorem 2.14 gives us that M(n) ≤ ⌈ n
2⌉. Next, we give a lower bound for M(n) by Theorem 2.18. We

begin by showing that cost is monotonically increasing with respect to pattern containment. Recall that

Cn(q) denotes the permutations in S n that contain the pattern q. A main fact that will be used is that

sorting by cuts has the property defined below.

Definition 2.15 (hereditary property). A shuffling method Σ has the hereditary property if the following

holds: Suppose that a sequence σ can be transformed into a sequence σ ′ by a permutation in
⋃∞

n=2Π
n
Σ .

If τ is a subsequence of σ and its symbols transform into the subsequence τ ′ of σ ′, then there exists a

permutation in
⋃∞

n=2Π
n
Σ transforming τ into τ ′.

This property is defined in [1], as a property of the so-called “permuting machines”. Here we will

use that shuffling by cuts has this property.

Lemma 2.16. If π ∈ Cn(q), then cost(π) ≥ cost(q).

Proof. Let us fix an occurrence oc of q in π. Assume that we have a sequence of iterations sorting π and

let itr be one of these iterations. Every cut c in itr is transforming a certain sequence of elements σ to

a sequence σ ′. If τ is the subsequence of σ, including all of the elements of oc, that is transformed to

a sequence τ ′, then by the hereditary property of sorting by cuts, there exists a cut c ′ which transforms

τ to τ ′. Therefore, for every sequence of iterations of Q′cuts that sorts π, one can get a corresponding

sequence of iterations that sorts its subsequence oc by substituting each cut c in an iteration from the
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initial sequence with the corresponding cut c ′. The total number of iterations may drop since some

of the iterations in the initial sequence sorting π may not affect the elements of oc. If we consider an

optimal sequence of cost(π) iterations sorting π, then the described correspondence gives a sequence of

at most cost(π) iterations of Q′cuts sorting q. Thus cost(q) ≤ cost(π). □

Recall that idr
n is the reverse identity: idr

n = n(n − 1) · · · 1.

Lemma 2.17. If π ′ ∈ Q′cuts(id
r
n), then π ′ ∈ Cn(idr

⌈ n
2 ⌉
), i.e., π ′ contains a decreasing subsequence of size

⌈ n
2⌉.

Proof. We will proceed by induction. The lemma holds for n = 1. Consider the first cut c in an arbitrary

iteration of Q′cuts over idr
n. Denote the output permutation after this iteration by π ′ = π ′1 · · · π

′
n. If n does

not participate in c, then π ′1 = n, because we have just pushed and popped π1 = n. Then we can look

at the considered iteration as one over idr
n−1 with the element n appended in front of the output. The

element n is in front of any decreasing subsequence in π ′2 · · · π
′
n. Therefore, we may apply the induction

hypothesis to get that π ′ must have a decreasing subsequence of size 1+ ⌈ n−1
2 ⌉ ≥ ⌈

n
2⌉.

If n participates in c, then let the cut c be performed after we have exactly k ≥ 2 numbers in

the device Q′cuts: n(n − 1) · · · (n − k + 1). After the cut c, these k numbers will be divided into two

decreasing sequences. In other words, π ′1 · · · π
′
k will be comprised of two segments that are decreasing

sequences. At least one of these sequences must be of size at least ⌈ k
2⌉ and therefore π ′1 · · · π

′
k contains

a decreasing sequence of such size. The rest of the iteration can be looked at as an iteration over idr
n−k.

Thus we can apply the inductive hypothesis to see that π ′k+1 · · · π
′
n must contain a decreasing sequence
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of size ⌈ n−k
2 ⌉. In addition, π ′1 · · · π

′
k > π

′
k+1 · · · π

′
n, so π ′ must contain a decreasing sequence of size

⌈ k
2⌉+ ⌈

n−k
2 ⌉ ≥ ⌈

n
2⌉. □

Now, we are ready to establish a lower bound for M(n), i.e., the maximal cost of a permutation of

size n.

Theorem 2.18. M(n) ≥ ⌈log2 n⌉, for each n ≥ 2.

Proof. We will prove that cost(idr
n) ≥ ⌈log2 n⌉ for each n ≥ 2, using induction. Obviously, idr

2 = 21

cannot be sorted with less than one iteration through Q′cuts. By Lemma 2.17, after one iteration over idr
n,

we will always get a permutation π ′ ∈ Cn(idr
⌈ n
2 ⌉
). By Lemma 2.16 and the induction hypothesis,

cost(π ′) ≥ cost(idr
⌈ n
2 ⌉
) ≥

⌈
log2

⌈n
2

⌉⌉
≥

⌈
log2

n
2

⌉
= ⌈log2 n⌉− 1.

But, π ′ ∈ Q′cuts(id
r
n), so cost(idr

n) = 1+ cost(π ′) ≥ 1+ (⌈log2 n⌉− 1) = ⌈log2 n⌉. □

There exist values of n for which M(n) > ⌈log2 n⌉. A question concerning the limit of M(n) is

formulated in Section 5.1.

We finish this section by showing that the permutations in S n can be paired up in terms of cost,

when using Q′cuts. Recall that for a permutation π = π1 · · · πn, π denotes the complement permutation,

defined by πi = n + 1− πi and that πr denotes the reverse of π, i.e., (πr)i = πn+1−i. Set π∗ = πr = (π)r.

Observe also thatΠn
cuts is closed under the ∗ operation; i.e., for all σ ∈ Πn

cuts, we have σ∗ ∈ Πn
cuts. Indeed,

(k(k + 1) · · · n12 · · · (k − 1))∗ = (n+ 2− k) · · · (n− 1)n12 · · · (n+ 1− k) ∈ Πn
cuts, for each k ∈ [2, n] and

n ≥ 2.
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Theorem 2.19. For any permutation π, cost(π) = cost(π∗).

Proof. We will show that cost(π∗) ≤ cost(π). The equality follows because (π∗)∗ = π, which will imply

that cost(π) ≤ cost(π∗). Let π = π1 · · · πn. Consider an arbitrary iteration itr over π, consisting of m cuts

associated with the permutations σ1, . . . , σm, respectively. Let the cut σk be applied over the segment

[ik, jk] in π, for k ∈ [m]. Denote the output permutation after the iteration itr with π ′. Consider an iteration

itr∗ over π∗, corresponding to itr, that also consists of m cuts, given by the permutations σ∗1, . . . , σ
∗
m

which are applied over the segments π∗n+1− jk
· · · π∗n+1−ik

, for k ∈ [m]. If (π∗) ′ is the output permutation

after applying itr∗, then we claim that (π∗) ′ = (π ′)∗. This implies that for any sequence of iterations

itr1, itr2, . . . , itrr that sorts π, one would have a corresponding sequence of iterations itr∗1, itr
∗
2, . . . , itr

∗
r that

sorts π∗, since id∗n = idn:

π
itr1−→ π ′ itr2−→ · · · itrr−→ idn

π∗
(itr1)∗
−−−→ (π ′)∗

(itr2)∗
−−−→ · · · (itrr)

∗

−−−→ (idn)
∗ = idn

Below is a concrete example of a single step for π = 526314 and an iteration itr consisting of two cuts

associated with the permutations 231 and 21 applied over the segments π1π2π3 = 526 and π5π6 = 14,

respectively. The corresponding iteration itr∗ over π∗ = 364152 consists of the two cuts associated with

the permutations 312 = 231∗ and 21 = 21∗ applied over the segments π∗7−3π
∗
7−2π

∗
7−1 = π

∗
4π
∗
5π
∗
6 = 152

and π∗7−6π
∗
7−5 = π

∗
1π
∗
2 = 36.
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π = 526314
itr
−→ 265341 = π ′

π∗ = 364152
itr∗
−→ 634215 = (π∗) ′ = (π ′)∗

231 21

(a) The diagrams of π = 526314, π ′ = 265341 and the action of itr.

231∗ = 31221∗ = 21

(b) The diagrams of π∗ = 364152, (π∗) ′ = 634215 and the action of itr∗.

Figure 14: Example appearing in the proof of Theorem 2.19. Rotate the permutation diagrams on
subfigure (a) at 180◦ to obtain those on subfigure (b).
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[Proof that (π ′)∗ = (π∗) ′]

The diagram of π∗ is obtained from the diagram of π by rotating at 180◦. In addition, the iteration itr∗

applies the same cuts as the iteration itr, but over the rotated diagram of π∗ (see Figure 14). Therefore,

the diagrams of (π∗) ′ and π ′ differ by a 180◦ rotation. Thus, if we rotate the diagram of π ′ by 180◦, we

will get the same diagrams, i.e., (π ′)∗ = (π∗) ′.

□

Note that Theorem 2.19 holds not only for cuts, but for any shuffling method Σ that is closed under

the ∗ operation.

2.5 Sorting by pop shuffle queues

One can easily see that every shuffle queue of type (ii) (the pop shuffle queues) can always sort at

least as many permutations as the shuffle queue of type (i) for the same shuffling method. For instance,

we saw, at the beginning of Section 2.3, that pn(Q
′
cuts) = O(d

n), where d = 2.32. It turns out that with

the pop shuffle queue for cuts, one can sort all n! permutations in S n. Below, we prove a more general

statement.

Theorem 2.20. If Σ is a shuffling method such that (Πk
Σ)

−1 contains at least one permutation ending in

j, for every j ∈ [k − 1] and every k ≥ 2, then

S n(Q
pop
Σ ) = S n,

for every n ≥ 2. In addition, Qpop
Σ can sort every permutation using a single pop operation.
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Proof. We will use induction on n, relying on a neat observation allowing us to make the induction step.

Note that S 2(Q
pop
Σ ) = S 2, since (Π2Σ)

−1 must contain 21 and the permutation 12 trivially belongs to

S 2(Q
pop
Σ ). Assume that n > 2 and that the statement is true for all n ′ < n. Take an arbitrary permutation

π with last element x ∈ [n] and prefix π ′; i.e., π = π ′x ∈ S n. If x = n, then by the induction hypothesis,

one can sort π ′ and then simply push and pop n to sort π. If x , n, then we know that there exists

σ ∈ (Πn
Σ)

−1 ending with x. Take one such σ and let σ B σ ′x. If we can get output σ ′ on input π ′ using

Q
pop
Σ and only one pop operation, then π would also be sortable by Qpop

Σ and only one pop operation

since one can get σ ′ in the device, push x, and shuffle by applying σ−1.

However, the induction hypothesis gives us that for any input of size n − 1, we can always get the

identity as an output. In order to get output σ ′ on input π ′, we can relabel the elements of π ′ with

1, . . . , n by looking at σ ′ as the identity. Formally, since both π ′ and σ ′ are permutations of [n] \ {x},

let τ ∈ S n−1 be the permutation satisfying τπ ′ = σ ′. By the induction hypothesis, τ can be sorted by

Q
pop
Σ using only one pop operation. Let itr be one such iteration that sorts τ with a single pop operation.

Observe that if we apply the same sequence of operations and permutations as in itr to input π ′, we will

get σ ′.

Example 2.21. Shuffling by cuts is a shuffling method having the property described in Theorem 2.20.

Let π = 25143. The last element of π is 3 ∈ [4]. Thus, ∃σ ∈ Π−1
cuts that ends with 3. Indeed, σ =

45123 ∈ Π−1
cuts. We have π ′ = 2514, σ ′ = 4512. The solution to τπ ′ = σ ′ is τ = 4231. Below is an

iteration of Qpop
cuts that sorts τ.
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4231

ε

ε


push
−−−→



231

4

ε


push
−−−→



31

42

ε


push
−−−→



1

423

ε


shuffle
(cut)

−−−−→


1

234

ε



push
−−−→



ε

2341

ε


shuffle
(cut)

−−−−→


ε

1234

ε


pop

(unload)
−−−−−→



ε

ε

1234


The same sequence of operations and permutations applied on each shuffle will give an output σ ′ =

4512 on input π ′ = 2514 :



2514

ε

ε


push
−−−→



514

2

ε


push
−−−→



14

25

ε


push
−−−→



4

251

ε


shuffle
(cut)

−−−−→


4

512

ε



push
−−−→



ε

5124

ε


shuffle
(cut)

−−−−→


ε

4512

ε


pop

(unload)
−−−−−→



ε

ε

4512


□
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Since the shuffling by cuts satisfies the condition described in Theorem 2.20, we get the following

corollary.

Corollary 2.22.

pn(Q
pop
cuts) = n!.

2.5.1 Pop shuffle queues for back-front shuffling methods

In this subsection, we prove Theorem 2.26, which is an analogue of Theorem 2.12 for pop shuffle

queues. However, Theorem 2.26 holds for a smaller set of shuffling methods compared to Theorem

2.12, which requires the corresponding shuffling method to have a permutation family consisting of

irreducible permutations. Some examples show that if we consider the same collection of shuffling

methods for pop shuffle queues, we would not have a similar one-to-one correspondence as in the proof

of Theorem 2.12. Nevertheless, we have such a correspondence if we constrain ourselves to shuffling

methods having a stronger property which we call the back-front property.

Definition 2.23 (Back-front shuffling method). A shuffling method Σ is back-front if for every n ≥ 2,

|Πn
Σ | = 1, i.e., Πn

Σ = {σn} for some σn ∈ S n and σn begins with n, i.e., the card at the back always goes

at the front.

One shuffling method having this property is the rev method defined in Section 2.2. Another example

is the shuffling method top-bottom defined below. This method simply switches the top and bottom card.

Definition 2.24. The shuffling method top-bottom:

∀n ≥ 2 : Πn
top-bottom = {n23 · · · (n − 1)1}.
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Example 2.25. Consider the following iteration of Qpop
top-bottom over 32415.



32415

ε

ε


push
−−−→



2415

3

ε


push
−−−→



415

32

ε


push
−−−→



15

324

ε


shuffle
−−−−→



15

423

ε


push
−−−→



5

4231

ε



shuffle
−−−−→



5

1234

ε


pop

(unload)
−−−−−→



5

ε

1234


push
−−−→



ε

5

1234


pop

(unload)
−−−−−→



ε

ε

12345



Theorem 2.26. For every back-front shuffling method Σ and every n ≥ 2,

pn(Q
pop
Σ ) = F2n−1,

where Fi is the i-th Fibonacci number with F(1) = F(2) = 1.

Proof. First, recall that we do not allow two consecutive shuffle operations when using shuffle queues.

Therefore, the output after an iteration ofQpop
Σ over a permutation π is determined by the list of segments

of π that were shuffled, since |Πm
Σ | = 1 for every m ≥ 2. For instance, the list of shuffled segments for the

iteration of Qpop
top-bottom over 324165 shown in Example 2.25 is ([1, 3], [1, 4], [5, 6]), since exactly three

shuffle operations were performed and the device contained the corresponding segment of π before

each of them, respectively. A list of shuffled segments l will always be in lexicographical order, i.e.,
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l = ([a1, b1], . . . , [ar, br]), where ai < bi, for any i ∈ [r], ai ≤ a j whenever i < j and bu < bv whenever

au = av and u < v. Since we are using pop shuffle queues, if two segments overlap, they must have

the same beginning. Thus when describing a list of segments with the same beginning, we will use the

shorthand [a; b1, b2, . . . , bv] to denote [a, b1], [a, b2], . . . , [a, bv] and we will call such a list a cluster.

We are interested in the possible lists of shuffled segments when sorting a permutation with Qpop
Σ or

equivalently in the possible lists of clusters. Denote this set of possible lists of clusters for input of size

n by LCn. Note that the set LCn does not depend on the shuffling method.

The idea of this proof is to show that for any π ∈ S n(Q
pop
Σ ), there exists a single list of clusters in

LCn, such that any iteration over Qpop
Σ corresponding to it sorts π and vice versa: for any given list of

clusters in LCn, there exists a single π ∈ S n(Q
pop
Σ ) that can be sorted by the iterations corresponding to

this list; i.e., by shuffling the given clusters. This will establish a one-to-one correspondence between

the sets S n(Q
pop
Σ ) and LCn. Then, we will show that |LCn| = F2n−1.

[LCn → S n(Q
pop
Σ )] Let Πm

Σ = {σm} and let l ∈ LCn. Assume that l = ([a1, b1], . . . , [ar, br]). Take idn

and apply consecutively σ−1br−ar
over the segment [ar, br], σ−1br−1−ar−1

over the segment [ar−1, br−1] and

so on. After applying σ−1b1−a1
over [a1, b1], we will obtain a permutation π ∈ S n which can obviously be

sorted by Qpop
Σ by shuffling the segments of π in the list l. Therefore, for every l ∈ LCn, we have only

one π ∈ S n(Q
pop
Σ ) that can be sorted with the iterations corresponding to l.

[S n(Q
pop
Σ )→ LCn] Let π ∈ S n(Q

pop
Σ ) and let us assume that π can be sorted by two different iterations

it1 and it2 over Qpop
Σ corresponding to two different lists of clusters in LCn, denoted by l1 and l2 with

their last clusters denoted by [a1; b11, . . . , b1c1 ] and [a ′1; b
′
11, . . . , b

′
1d1

], respectively. If these last clusters

are the same, then before applying the shuffles in each of them, we must have the same permutation in
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the content of the device. Therefore, without loss of generality, we can assume that [a1; b11, . . . , b1c1 ] ,

[a ′1; b
′
11, . . . , b

′
1d1

] and that [a1, b1c1 ] , [a ′1, b
′
1d1

]. If b1c1 , b ′1d1 , then let b1c1 < b ′1d1 , without loss of

generality. In this case, we will have that the element πb ′
1d1

is not moved anywhere when sorting π by it1

(and thus πb ′
1d1

= b ′1d1). However, when sorting π by it2, πb ′
1d1

is moved at position a ′1 since the method

Σ is back-front and this is the last time this element is moved. Note also that a ′1 , b ′1d1 . Therefore, it2

does not sort π, which is a contradiction.

Thus b1c1 = b ′1d1 and we must have that a1 , a ′1. Let x B b1c1 = b ′1d1 . Then, πx goes to positions

a1 and a ′1, when we sort π with it1 and it2, respectively. This means that πx = a1 and that πx = a ′1, but

a1 , a ′1. This is a contradiction, which shows that any π ∈ S n(Q
pop
Σ ) can be sorted by iterations over

Q
pop
Σ corresponding to exactly one list of clusters in LCn.

[Finding |LCn|] The desired correspondence between S n(Q
pop
Σ ) and LCn was established. Therefore,

it suffices to get the number of different possible lists of clusters, |LCn|, in order to find pn(Q
pop
Σ ). If

l = ([a1; b11, . . . , b1c1 ], . . . , [am; bm1, . . . , bmcm ]) ∈ LCn, then l is determined by the c ′1 + · · · + c ′m B k

numbers in [n] comprising l, where we have c ′j B c j + 1 numbers in the j-th cluster and c ′j ≥ 2 for each

j ∈ [m]. We have a1 < b11 < · · · < b1c1 < a2 < · · · < am < bm1 < · · · < bmcm and thus these k numbers

can be chosen in
(
n
k

)
ways, where k ∈ [2, n]. The number of compositions c ′1 + · · ·+ c ′m = k, where each

c ′j ≥ 2 is Fk−1, as proved in Lemma 2.27 following this proof. When k = 0, we have the empty set of

clusters. Therefore, we obtain |LCn| = 1 +
n∑

k=2

(
n
k

)
Fk−1, which is shown to be equal to F2n−1 in Lemma

2.28 via a nice combinatorial argument. □
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Lemma 2.27. ([134, Exercise 1.35b]) The number of compositions

α1 + α2 + · · ·+ αm = k,

of an integer k ≥ 2, where each part α j ≥ 2, is given by the Fibonacci number Fk−1, where F1 = F2 = 1.

Lemma 2.28. ([18, Chapter 1, Identity 20])

F2n−1 = 1+
n∑

k=2

(
n
k

)
Fk−1, (2.3)

where F j denotes the j-th Fibonacci number and F1 = F2 = 1.

2.5.2 A conjecture on Wilf-pop-equivalence

Theorem 2.26 enumerates the sortable permutations for a small subset of pop shuffle queues. One

can consider sorting by pop shuffle queues for various other shuffling methods common in the literature,

such as the In-shuffles and Monge shuffles defined in Section 1.4.1.

Definition 2.29 (Wilf-pop-equivalent shuffling methods). The shuffling methods Σ1 and Σ2 are Wilf-

pop-equivalent, if for each n ≥ 1,

pn(Q
pop
Σ1

) = pn(Q
pop
Σ2

).

In this section, we formulate and investigate the following conjecture related to the pop shuffle

queues for the two methods.

Conjecture 2.30. The In-shuffle and the Monge shuffling methods are Wilf-pop-equivalent.
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A first step that may help to establish the conjecture is the next theorem, which confirms it if one

has to use a single pop operation. Let S 1n(Q
pop
Σ ) be the set of permutations of size n sortable by Qpop

Σ

using only one pop operation and let p1n(Q
pop
Σ ) B |S 1n(Q

pop
Σ )|.

Theorem 2.31. For every n ≥ 1,

p1n(Q
pop
In-sh) = p1n(Q

pop
Monge).

In addition, for every n ≥ 3, p1n(Q
pop
In-sh) = p1n(Q

pop
Monge) = an−2, where a1 = 2, a2 = 4 and an = 3an−2

for n ≥ 3 (sequence A068911 in [118]).

We will show separately, with the next two lemmas, that p1n(Q
pop
In-sh) and p1n(Q

pop
Monge) are equal to

an−2, for all n > 4. This will suffice to establish Theorem 2.31, since one can check directly that the

statement of the theorem holds for n ≤ 4.

Lemma 2.32. p1n(Q
pop
Monge) = an−2, for all n > 4.

Proof. Let Π i
Monge = {σi}, for i > 1. We will need to use permutations of the same size. Thus let

τi(x) B


σi(x), if x ≤ i,

x, if x > i.

(2.4)

be a permutation of size n, for i ∈ [2, n]. Recall that sorting π ∈ S n with an iteration over Qpop
Monge

having a single pop, corresponds to a cluster [1; b1, b2, . . . , n], where one performs a shuffle after pushing

b1, b2, . . . , n elements, respectively. The output will be πτb1τb2 · · · τn = idn. In general, the set of the

possible iterations with a single pop over Qpop
Monge is described by the set of vectors (δ2, . . . , δn), where
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δi = 0 or 1, for each i ∈ [2, n] and the set of possible outputs on input π is described by πτδ22 · · · τ
δn
n . Note

that if 2 j + 1 < n and j ≥ 1, then τ2 j = τ2 j+1.

Therefore, if n = 2k + 1, for a given k, then the possible outputs on input π are πτδ
′
2
2 τ
δ ′4
4 · · · τ

δ ′
2k
2k ,

where δ ′2i = 0, 1 or 2, for each i ∈ [k]. If π ∈ S 1n(Q
pop
Monge), then π is a solution to πτδ

′
2
2 τ
δ ′4
4 · · · τ

δ ′
2k
2k = idn

for some (δ ′2, . . . , δ
′
2k). Thus, p1n(Q

pop
Monge) is given by the number of different products τδ

′
2
2 τ
δ ′4
4 · · · τ

δ ′
2k
2k . We

will show that τδ
′
2
2 τ
δ ′4
4 · · · τ

δ ′
2k
2k , τ

δ ′′2
2 τ
δ ′′4
4 · · · τ

δ ′′
2k
2k , if (δ ′2, . . . , δ

′
2k) , (δ ′′2 , . . . , δ

′′
2k). This means that it suffices

to count the number of different vectors (δ ′2, . . . , δ
′
2k) which implies that p1n(Q

pop
Monge) = 3p1n−2(Q

pop
Monge)

since δ ′2k has three possible values.

Assume that τδ
′
2
2 τ
δ ′4
4 · · · τ

δ ′
2k
2k = τ

δ ′′2
2 τ
δ ′′4
4 · · · τ

δ ′′
2k
2k for some (δ ′2, . . . , δ

′
2k) , (δ ′′2 , . . . , δ

′′
2k). We can further

assume that δ ′2k < δ
′′
2k. Therefore, τδ

′
2
2 τ
δ ′4
4 · · · τ

δ ′
2k−2
2k−2 = τ

δ ′′2
2 τ
δ ′′4
4 · · · τ

δ ′′
2k−2
2k−2τ

δ ′′
2k−δ

′
2k

2k , where δ ′′2k − δ
′
2k ∈ {1, 2}.

However, τ2k(1) = 2k and τ22k(1) = 2k − 1, i.e., τ
δ ′′
2k−δ

′
2k

2k moves one of the last two elements to the first

position, while neither of τ2, . . . , τ2k−2 moves any of these two elements, which is a contradiction. If

n = 2k, we can proceed in a similar way. We would still have p1n(Q
pop
Monge) = 3p1n−2(Q

pop
Monge) since we

have three times more possibilities for the vector (δ2, . . . , δ2k−2, δ2k), where δ2k is 0 or 1 and δ2i is 0, 1 or

2 for i ∈ [2, k−1], compared to (δ2, . . . , δ2k−2), where δ2k−2 is 0 or 1 and δ2i is 0, 1 or 2 for i ∈ [2, k−2].

□

Lemma 2.33. p1n(Q
pop
In-sh) = an−2, for all n > 4.
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Proof. Let Π i
In-sh = {σi}, for i > 1 and let

τi(x) B


σi(x), if x ≤ i,

x, if x > i.

be a permutation of size n, for i ∈ [2, n]. Again, we have that τ2 j = τ2 j+1, if 2 j + 1 ≤ n. The number

p1n(Q
pop
In-sh) is given by the number of solutions of πτδ

′
2
2 τ
δ ′4
4 · · · τ

δ ′
2k
2k = idn for some (δ ′2, . . . , δ

′
2k), where

δ ′2i = 0, 1 or 2, for i ∈ [k]. We will show, again, that τδ
′
2
2 τ
δ ′4
4 · · · τ

δ ′
2k
2k , τ

δ ′′2
2 τ
δ ′′4
4 · · · τ

δ ′′
2k
2k , if (δ ′2, . . . , δ

′
2k) ,

(δ ′′2 , . . . , δ
′′
2k). Assume the opposite. Assume also that δ ′2k < δ

′′
2k, without loss of generality. Therefore,

τ
δ ′2
2 τ
δ ′4
4 · · · τ

δ ′
2k−2
2k−2 = τ

δ ′′2
2 τ
δ ′′4
4 · · · τ

δ ′′
2k−2
2k−2τ

δ ′′
2k−δ

′
2k

2k , where δ ′′2k − δ
′
2k > 0. The possible values of δ ′′2k − δ

′
2k are 1

and 2. Now, it suffices to see that τ2k(2k − 1) = 2k and τ22k(2k − 3) = 2k, while neither of τ2, . . . , τ2k−2

moves the element 2k. This is a contradiction, implying that p1n(Q
pop
In-sh) is equal to the number of different

vectors (δ ′2, . . . , δ
′
2k). Thus p1n(Q

pop
In-sh) = 3p1n−2(Q

pop
In-sh) for both odd and even values of n, in the same

way as for Monge shuffles. □

With the next two facts, we give recurrence relations for the number of permutations in S n(Q
pop
Monge)

that end with n and that do not end with n. We also show that we have similar inequalities for these two

subsets of S n(Q
pop
In-sh). Let p′n(Q

pop
Σ ) = |{π ∈ S n(Q

pop
Σ ) | πn = n}| and let p′′n (Q

pop
Σ ) = |{π ∈ S n(Q

pop
Σ ) |

πn , n}|, where Σ is a shuffling method. Denote the number of elements in the device D before the last

pop operation, for an iteration itr over D, by lps(itr), which stands for last pop size. One observation we

use is that if π can be sorted by an iteration itr over either Qpop
Monge or Qpop

In-sh, then the last element of π

determines whether lps(itr) is odd or even.
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Theorem 2.34. For every n ≥ 1,

p′n(Q
pop
Monge) = pn−1(Q

pop
Monge) +

1

3

⌊ n−1
2 ⌋∑

j=2

p12 j+1(Q
pop
Monge)pn−(2 j+1)(Q

pop
Monge) (2.5)

and

p′n(Q
pop
In-sh) ≤ pn−1(Q

pop
In-sh) +

1

3

⌊ n−1
2 ⌋∑

j=2

p12 j+1(Q
pop
In-sh)pn−(2 j+1)(Q

pop
In-sh). (2.6)

Proof. Let π ∈ S n(Q
pop
Monge), where πn = n and let itr be an iteration sorting π by the given device. Let

lps(itr) = k. The sequence of operations for itr ends either with push, pop or with push, shuffle, pop.

In the first case, the possible prefixes π ′ = π1 · · · πn−1 are exactly the permutations in S n−1(Q
pop
Monge),

since the iteration itr sorts π ′ and conversely if we have an iteration itr’ that sorts some π ′ ∈ S n−1(Q
pop
Monge),

then π ′n would be sorted by applying itr’ and then adding the operations push, pop at the end. Therefore,

we have pn−1(Q
pop
Monge) such permutations π.

In the second case, the last shuffle must leave the element πn = n at the same position. The latter

means that σk(k) = k, where Πk
Monge = {σk}, which is true if and only if k is odd. Let k > 1 be a fixed

odd number. Let us also have π ′ B red(πn−k+1 · · · πn). As in the proof of Theorem 2.31, we must have

that π ′ is a solution of the equation π ′τδ22 · · · τ
δk−1
k−1 τ

δk
k = idk, for a binary vector (δ2, . . . , δk) and where

the permutations τ j are defined by Equation (2.4) in the same proof. Recall that δ j = 1 if and only if

the iteration itr has a shuffle operation immediately after the j-th element of π ′ is pushed. Take one such

solution π ′ corresponding to the vector (δ2, . . . , δk). We have a shuffle before the last pop, which means

that δk = 1. If δk−1 = 0, then we must also have π ′τδ22 · · · τ
δk−2
k−2 τk−1 = idk since k is odd and τk−1 = τk.

This means that π ′ can be sorted with an iteration ending with the operations push and pop and thus the
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same holds for π. These permutations π were already counted in the first case. Therefore, we must have

π ′ for which δk−1 = δk = 1 in order for π to not be counted yet. The number of these permutations π ′ is

the same as the number of different products τδ22 · · · τ
δk−2
k−2 , which is p1k−2(Q

pop
Monge) =

1
3 p1k(Q

pop
Monge). The

permutation π1 · · · πn−k could be any of the permutations in S n−k(Q
pop
Monge). Therefore, summing over all

odd values of k = 2 j + 1, we get an inequality similar to Inequality (2.5):

p′n(Q
pop
Monge) ≤ pn−1(Q

pop
Monge) +

1

3

⌊ n−1
2 ⌋∑

j=2

p12 j+1(Q
pop
Monge)pn−(2 j+1)(Q

pop
Monge). (2.7)

All of the steps of the proof so far are applicable to In-shuffles as well. Therefore, we have obtained

Inequality (2.6).

It remains to show that instead of Inequality (2.7), one can write an equality. This is true because

of the following observation. Assume that π can be sorted by Qpop
Monge using two different iterations itr

and itr’ with lps(itr) = 2 j + 1 and lps(itr’) = 2 j ′ + 1, where j , j ′. Assume also, that πn = n and that

π1 · · · πn−1 < S n−1(Q
pop
Monge). Then, both itr and itr’ must have two shuffle operations after pushing the

elements πn−1 and πn, respectively. In addition, τ22v(1) = 2v − 1 for each v ≥ 1. Therefore, since itr

sorts π, we must have πn−1 = n − (2 j + 1) + 1 = n − 2 j. However, since itr’ sorts π, we must also have

πn−1 = n − 2 j ′, which is a contradiction. □

Theorem 2.35. For every n ≥ 1,

p′′n (Q
pop
Monge) =

⌊ n
2 ⌋∑

j=1

p12 j(Q
pop
Monge)pn−2 j(Q

pop
Monge) (2.8)
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and

p′′n (Q
pop
In-sh) ≤

⌊ n
2 ⌋∑

j=1

p12 j(Q
pop
In-sh)pn−2 j(Q

pop
In-sh). (2.9)

Equation (2.8) follows from a property of the Monge shuffle, which we formulate below.

Definition 2.36 (Pop-simple shuffling method). The shuffling method Σ is pop-simple if there is no

permutation π ∈ S 1(Qpop
Σ ), not ending with n, such that π = π ′⊕π ′′ for some π ′ and π ′′, where |π ′| ≥ 2,

|π ′′| ≥ 2 and π ′′ ∈ S 1(Qpop
Σ ).

Intuitively, if a shuffling method Σ is pop-simple and σ ∈ S n(Q
pop
Σ ) does not end with n, then lps(itr)

has the same value for every iteration itr of Qpop
Σ sorting σ.

Lemma 2.37. The Monge shuffling method is pop-simple.

Proof. Suppose that there exists π ∈ S n, not ending by n, such that π = π ′⊕π ′′ for some π ′ and π ′′, such

that |π ′| ≥ 2, |π ′′| ≥ 2, and each of π and π ′′ can be sorted by Qpop
Σ using a single pop operation. Every

iteration sorting a permutation by Qpop
Monge that uses a single pop operation can be written as a cluster

beginning with the element 1. Consider an arbitrary cluster [1; b1, b2, . . . , bv] representing an iteration

that sorts π. Since π does not end with n, then the last shuffle must be after we push the last element, i.e.,

bv = n. In addition, we must have σn , n, where Πn
Monge = {σ} and σ = σ1 · · ·σn. Note that σ either

begins with n (when n is even) or ends with n (when n is odd). Therefore, σ must begin with n, which

means that πn = 1. However, since π = π ′ ⊕ π ′′, we must have that 1 is among the first |π ′| elements of

π. It cannot be the last element of π ′, since π ′′ is non-empty, which is a contradiction. □

Proof of Theorem 2.35. Let π ∈ S n(Q
pop
Monge), where πn , n and let itr be an iteration sorting π byQpop

Monge.

Note that the sequence of operations for itr must end with push, shuffle, pop since πn must be moved to
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another position. This is also the reason that if lps(itr) = k, then k must be even since all permutations

of odd size associated with the Monge shuffle fix its last element. The permutation π1 · · · πn−k could be

any of the permutations in S n−k(Q
pop
Monge). Therefore, summing over all even values of k = 2 j, we get

p′′n (Q
pop
Monge) ≤

⌊ n
2 ⌋∑

j=1

p12 j(Q
pop
Monge)pn−2 j(Q

pop
Monge). (2.10)

All of the steps of the proof so far are applicable to In-shuffles, as well, and thus Inequality (2.9) can be

obtained analogously.

It remains to show that instead of Equation (2.10), one can write Equation (2.8). Assume that π can

be sorted by Qpop
Monge using two different iterations itr and itr’ with lps(itr) = 2 j and lps(itr’) = 2 j ′, where

j > j ′. Then, both sequences γ = red(πn−2 j+1 · · · πn) and κ = red(πn−2 j ′+1 · · · πn) must be permutations

of [2 j] and [2 j ′], respectively, and they must be sortable with a single pop. However, this would imply

that the Monge shuffling method is not pop-simple, because γ = γ ′ ⊕ κ for γ ′ = red(πn−2 j+1 · · · πn−2 j ′),

|γ ′| ≥ 2, |κ| ≥ 2 and γ,κ ∈ S 1(Qpop
Monge). This contradicts Lemma 2.37. □

If one can replace Inequality (2.6) and Inequality (2.9) with equations, then one can obtain Con-

jecture 2.30 using induction and Theorem 2.31. Inequality (2.9) can be replaced by an equation if and

only if the In-shuffle method is also pop-simple. It is possible to find permutations π ′ and π ′′, for which

π = π ′ ⊕ π ′′, |π ′|, |π ′′| ≥ 2 and π ∈ S 1(Qpop
In-sh). For instance, if π = 21 ⊕ 62481357, then π ∈ S 1(Qpop

In-sh).

However, in this example, π ′′ = 62481357 < S 1(Qpop
In-sh). We have performed computer simulations

using Theorem 2.35 which show that there is no such permutation π ∈ S n for n < 20 and thus we have
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an equality in Inequality (2.9) for n < 20 . Similarly, we have checked that Inequality (2.6) is an equality

for n < 20. In other words, Conjecture 2.30 holds for n < 20.



CHAPTER 3

MOMENTS OF PERMUTATION STATISTICS AND CENTRAL LIMIT THEOREMS

This chapter is based on a joint work with Niraj Khare.

3.1 Aggregates of permutation statistics

We are often interested in the expected value E( f ) of the permutation statistic f , for a permutation

chosen uniformly at random from S n. Obviously, we have E( f ) = M( f , n)/n!, where M( f , n) is the

aggregate of f , defined as

M( f , n) B
∑
σ∈S n

f (σ).

In this section, we show that M( f , n) is a linear combination of factorials with constant coefficients for

each permutation statistic in the class described by Definition 1.43 in Section 1.5. This is an analogue

of the results in [37] for aggregates of set partition statistics and those in [96] for aggregates of statistics

on matchings. To deal with the constraints, when we have vincular and bivinuclar patterns, we use the

same technique to compress numbers used in both of these articles.

Theorem 3.1. Let fP,Q be a simple statistic of degree m associated with the pattern P of size k and the

valuation polynomial Q(s,w) = Q1(s)Q2(w). Assume that c = |C(P)| and d = |D(P)|. Then

M( fP,Q, n) = R(n)(n − k)! (3.1)

89
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where R(x) is a polynomial of degree no more than m − c − d. Equivalently for n ≥ k, M( f , n) can be

expressed as a linear combination of shifted factorials with constant coefficients, i.e.,

M( fP,Q, n) =


0 if n < k, and
m−c−d∑

i=0

ci(n − k + i)! if n ≥ k
, (3.2)

for some constants ci ∈ Q.

Proof. Let Tn,k := {(t1, t2, · · · , tk) ∈ [n]k | 1 ≤ t1 < t2 < · · · < tk ≤ n} be the set of increasing vectors of

k numbers in [n]. For simplicity, fix n and k and let T B Tn,k. Note that if s ∈P σ for some σ ∈ S n, then

s ∈ T . Let us also define W := {(w1,w2, . . . ,wk) ∈ [n]k | for all i, j ∈ [k], if wi = w j, then i = j}. Note

that |T | =
(
n
k

)
and |W | = n(n − 1) · · · (n − k + 1). We have

M( fP,Q, n) =
∑
σ∈S n

fP,Q(σ) =
∑
σ∈S n

∑
s∈Pσ

Q1(s)Q2(σ−1(s))

=
∑
s∈T

∑
σ∈S n
s∈Pσ

Q1(s)Q2(σ−1(s)) =
∑
s∈T

Q1(s)
∑
σ∈S n
s∈Pσ

Q2(σ−1(s)).

For any s ∈ T , let G(s) := {σ ∈ S n | s ∈P σ}, and for any w ∈ W, let

H(w) := {σ ∈ S n | (t1, . . . , tk) ∈P σ, where σ−1(ti) = wi, for all i ∈ [k]}.
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That is, H(w) is the set of permutations in S n having occurrences of P at the positions in w. In addition,

for any s ∈ T and w ∈ W, let Z(s,w) be the set of permutations in S n having occurrences of P at the

positions in w and using the values in s. Formally,

Z(s,w) := {σ ∈ S n | s = (t1, . . . , tk) ∈P σ, σ
−1(ti) = wi for all i ∈ [k]}.

Clearly, for any s ∈ T and w,w ′ ∈ W for which w , w ′, we have Z(s,w)∩Z(s,w ′) = ∅. Also, note that

G(s) = ∪w∈WZ(s,w). Hence, we can rewrite the above equations in the following way:

M( fP,Q, n) =
∑
s∈T

Q1(s)
∑
σ∈S n
s∈Pσ

Q2(σ−1(s)) =
∑
s∈T

Q1(s)
∑
σ∈G(s)

Q2(σ−1(s))

=
∑
s∈T

Q1(s)
∑

σ∈∪w∈W Z(s,w)

Q2(w) =
∑
s∈T

Q1(s)

∑
w∈W

Q2(w)
∑
σ∈Z(s,w)

1

 .

Consider any fixed vector of values s ∈ T and a vector of positions w ∈ W. If Z(s,w) , ∅, then

|Z(s,w)| = (n − k)! since the remaining n − k values, except those in s, can be arranged in all the

possible ways at the remaining n− k positions, which are not in w. Furthermore, if we define T ′ B {s ∈

T | G(s) , ∅} and W ′ B {w ∈ W | H(w) , ∅}, then observe that the values in any s ∈ T ′ can be at the
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positions determined by any w ∈ W ′ and vice versa. In other words, Z(s,w) , ∅, if and only if s ∈ T ′

and w ∈ W ′. Therefore,

M( fP,Q, n) =
∑
s∈T

Q1(s)

∑
w∈W

Q2(w)
∑
σ∈Z(s,w)

1


= (n − k)!

∑
s∈T ′

Q1(s)


∑

w∈W ′
Q2(w)

 .
Consider s ∈ T and w ∈ W, such that Z(s,w) , ∅. Now, we will use the compression technique, which

relies on the following observation: Since |D(P)| = d, every subset of [n− d] of k− d different numbers

corresponds to a set of values s ∈ T ′ and the correspondence is one-to-one. Formally, let us call i + 1

a follower, if i ∈ D(P) and a non-follower, if i < D(P). If g(i) ∈ [k] denotes the index of the i-th

non-follower, then let yi B tg(i) − (g(i) − i). Then, the vector s ∈ T ′ determines uniquely the vector

(y1, . . . , yk−d) and one can see that yu < yv, if u < v. Indeed, it suffices to show this for v = u+1. In this

case we have yu+1 = tg(u+1)−(g(u+1)−(u+1)) > tg(u+1)−1−(g(u+1)−(u+1)), but we must have that

tg(u+1)−1 = tg(u)+(g(u+1)−g(u)−1), because all the numbers between g(u) and g(u+1) are followers.

Thus, yu+1 > tg(u)+(g(u+ 1)− g(u)− 1)− (g(u+ 1)− (u+ 1)) = tg(u)−(g(u)− u) = yu. Conversely,

for any (y1, . . . , yk−d) ∈ Tn−d,k−d, the vector (t1, . . . , tk) is uniquely determined, since t j = yi + j − i,

where j is the index of the i-th non-follower and t j = t j−1 + 1, if j is an index of a follower. Thus Q1

can be viewed as a polynomial in y1, . . . , yk−d and n.

We can proceed in the same way for W ′ and C(P). The only difference is that the elements of any

w ∈ W ′ are not necessarily in increasing order. However, the elements of w = (wP−1(1), . . . ,wP−1(k))

are always in increasing order and the map w 7→ w is a bijection. Thus, using this map, we can get a set
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W ′′ ⊆ W, such that there is a bijection between W ′ and W ′′ and a bijection between W ′′ and Tn−c,k−c

(by the compression technique). Hence there is a bijection between W ′ and Tn−c,k−c and Q2 can be

viewed as a polynomial in x1, . . . , xk−c and n, where (x1, . . . , xk−c) ∈ Tn−c,k−c. Therefore, we have

M( fP,Q, n) = (n − k)!
∑

(y1,...,yk−d)∈Tn−d,k−d

Q̃1(y1, . . . , yk−d, n)
∑

(x1,...,xk−c)∈Tn−c,k−c

Q̃2(x1, . . . , xk−c, n),

for some polynomials Q̃1 and Q̃2 of the same degree as Q1 and Q2, respectively. The product of the

two sums above yields a polynomial in n of degree at most the sum of the following two terms: the

maximum possible degree of n in the product
(
n−d
k−d

)
Q̃1 and the maximum possible degree of n in the

product
(
n−c
k−c

)
Q̃2. Therefore, the degree of the product is at most

k − d + deg(Q1) + k − c + deg(Q2) = (deg(Q1) + deg(Q2) + 2k) − c − d = m − c − d,

since m = d( fP,Q) = deg(Q1) + deg(Q2) + 2k.

To see Equation (3.2), let gi(n) be a polynomial in n defined by gi(n) = (n − k + i)!/(n − k)!. Then

gi is of degree i, and hence {gi(n)}∞i=0 forms a basis of Q[n]. It follows that any polynomial of degree i

can be written as a linear combination of g0(n), . . . , gi(n). This implies Equation (3.2). □

Next, we consider any general statistic. Recall that a statistic is a Q-linear combination of simple

statistics.

Theorem 3.2. For any statistic f of degree m, there is a positive integer L ≤ m
2 , such that for all n ≥ L,

M( f , n) = U(n)(n − L)!, (3.3)
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where U(n) is a polynomial of degree no more than m + L. Equivalently, if n ≥ L, then

M( f , n) =
∑

−L≤i≤m

αi(n + i)!, (3.4)

for some constants αi ∈ Q.

Proof. Assume that

f =

t∑
i=1

hi fPi,Qi ,

with hi ∈ Q. Then, by Theorem 3.1,

M( f , n) =
t∑

i=1

hiM( fPi,Qi , n) =
t∑

i=1

hiRi(n)(n − ki)!,

where ki is the size of Pi and the degree of Ri(n) is no more than deg( fPi,Qi) − di − ci ≤ m, where

ci = |C(Pi)| and di = |D(Pi)|. Combining the terms with the same (n − ki)! yields the equation

M( f , n) =
L∑

j=0

U j(n)(n − j)!,

where U j(n) is a polynomial of degree no more than m, and L = max(ki) ≤
m
2 .

As (n−L+i)!
(n−L)! = (n − L + i)(n − L + (i − 1)) · · · (n − L + 1) is polynomial in n of degree i, we obtain

Equation (3.3) for n ≥ L. In addition, (n−L+i)!
(n−L)! for 0 ≤ i ≤ L + m forms a basis and Equation (3.4) is

obtained by expanding U(n) under the basis
{
1,

(n−L+1)!
(n−L)! ,

(n−L+2)!
(n−L)! , · · · ,

(n−L+L+m)!
(n−L)!

}
. □
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Theorem 3.2 allows us to obtain a closed-form expression for M( f , n) (and respectively for E( f )),

for any statistic f whenever we know the exact values of M( f , n) for a set of L+m+ 1 values of n ≥ L,

where m = d( f ). Then, we can take Equation (3.4) and substitute each of these values for n. We get

a system of L + m + 1 linear equations, where the variables are the numbers αi, for i ∈ [−L,m]. After

we solve it, we have a closed-form expression for M( f , n) as a linear combination of shifted factorials,

coming from the same Equation (3.4). We used this approach and implemented a computer program,

in order to obtain these closed forms for the aggregates of the statistics given as examples in Chapter 1.

Some of the results are listed below.

Example 3.3. (formulas for aggregates of statistics)

a) cnt1324.

Recall that the simple statistic cnt1324 = fP,Q, where P = (1324, ∅, ∅) and Q = 1. We have

M(cnt1324, n) =
1

24
n! −

1

6
(n + 1)! +

1

8
(n + 2)! −

1

36
(n + 3)! +

1

576
(n + 4)!.

In fact, a simple linearity of expectation argument gives that M(cntP, n) = 1
k!

(
n
k

)
n! for the number

of occurrences of any classical pattern P of size k. By using that the so-called Lah numbers,

L(k, j) =
(
k−1
j−1

)
k!
j! , are the coefficients expressing rising factorials in terms of falling factorials, one

can show that

M(cntP, n) =
1

k!

(
n
k

)
n! =

(−1)k

k!
n! +

k−1∑
j=1

(−1)k− j

( j!)2(k − j)!
(n + j)! +

1

(k!)2
(n + k)!.
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Such a general formula can be derived for an arbitrary bivincular pattern.

b) Descent drop.

Recall that for the simple statistic drops = fP,Q, P = (21, {1}, ∅) and Q(s,w) = Q1(s)Q2(w),

where Q1(s) = Q1(t1, t2) = t2 − t1 and Q2(w) = 1. We have

M(drops, n) = −
1

2
(n + 1)! +

1

6
(n + 2)!.

c) Sum of pinnacle squares.

Recall that the statistic pncSqSum is a sum of the two simple statistics corresponding to the

patterns P = (132, {1, 2}, ∅) and P = (231, {1, 2}, ∅), where the valuation polynomials for both

statistics are Q(s,w) = Q1(s)Q2(w) with Q1(s) = Q1(t1, t2, t3) = t23 and Q2(w) = 1. We have

M(pncSqSum, n) = (n + 1)! −
5

4
(n + 2)! +

1

5
(n + 3)!.

3.2 Higher moments of simple statistics

Our next goal is to show that the higher moments of statistics are also statistics, as defined in Chap-

ter 1. In order to investigate the higher moments, we will need to look at ordered tuples of occurrences

of a given pattern. To do that, we will first define a merge of patterns, as done originally in [37] for set

partitions. In the definition given below, g(S ) B {g(x) | x ∈ S }, where g is a function and S is a set.

Also, recall that A(π) is the set of distinct pairs of integers (u, v), such that u occurs before v in π.
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Definition 3.4 (Merge of patterns). Given are three patterns

P1 = (x,C(P1), D(P1)), P2 = (y,C(P2), D(P2)), and P3 = (z,C(P3), D(P3)),

of sizes k1, k2 and k3, respectively. A merge of P1 and P2 onto P3 is a pair of increasing functions

m1 : [k1] → [k3] and m2 : [k2] → [k3], such that

1. m1([k1]) ∪ m2([k2]) = [k3].

2. for every i, j ∈ [k1], (m1(i),m1( j)) ∈ A(z) if and only if (i, j) ∈ A(x) and for every i, j ∈ [k2],

(m2(i),m2( j)) ∈ A(z) if and only if (i, j) ∈ A(y).

3. for every j ∈ C(P1), z−1(m1(x j+1)) = z−1(m1(x j))+1 and for every j ∈ C(P2), z−1(m2(y j+1)) =

z−1(m2(y j)) + 1. In addition,

C(P3) = {z−1(m1(x j)) | j ∈ C(P1)} ∪ {z−1(m2(y j)) | j ∈ C(P2)}.

4. for every j ∈ D(P1), m1( j + 1) = m1( j) + 1 and for every j ∈ D(P2), m2( j + 1) = m2( j) + 1.

In addition,

D(P3) = {m1( j) | j ∈ D(P1)} ∪ {m2( j) | j ∈ D(P2)}.

A merge will be denoted by m1,m2 : P1, P2 → P3. The size of a merge will be the size of the pattern P3.

Example 3.5.

Let P1 = (132, {1}, {2}), P2 = (21, ∅, ∅) and P3 = (2143, {2}, {3}). Define the increasing functions m1

and m2 as follows: m1(1) = 1, m1(2) = 3, m1(3) = 4, and m2(1) = 1, m1(2) = 2.
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Note that for a merge, the pattern P3 may not be uniquely determined by the functions m1, m2 and the

patterns P1, P2. For instance, assume that P1 = 321, P2 = 21 and m1(1) = 1, m1(2) = 2, m1(3) = 4,

m2(1) = 3, m1(2) = 4. Then, P3 can be 4321, 4231 or 4213. When we say merges of two patterns, P1

and P2, we will refer to the set of patterns P3, for which there exists a merge of P1 and P2 onto P3.

Lemma 3.6. Let P1 and P2 be two patterns. For any σ ∈ S n, there is a one-to-one correspondence

between the following sets.

{(s1, s2) : s1 ∈P1 σ, s2 ∈P2 σ} ↔ {s3 ∈P3 σ | m1,m2 : P1, P2 → P3}.

Proof. Let P1 = (x,C(P1),D(P1)) and P2 = (y,C(P2),D(P2)).

(=⇒) Assume that s1 ∈P1 σ and s2 ∈P2 σ. Take the union of the elements of s1 and s2 and sort

the elements of this union in increasing order. Let s3 be the resulting increasing vector of numbers in

[n]. As in the case of matchings and partitions, the maps ma, for a = 1, 2, must be given by the unique

function so that ma(i) = j if and only if the i-th smallest element of sa equals the j-th smallest element

of s3. If the elements of s3 form the subsequence σi1 · · ·σik3 in σ, then let z = red(σi1 · · ·σik3 ) and let

P3 = (z,C(P3), D(P3)), where C(P3) = {z−1(m1(x j)) | j ∈ C(P1)} ∪ {z−1(m2(y j)) | j ∈ C(P2)} and

D(P3) = {m1( j) | j ∈ D(P1)} ∪ {m2( j) | j ∈ D(P2)}.

We will show that m1,m2 : P1, P2 → P3. One can easily verify that conditions (1) and (2) of

Definition 3.4 hold. It remains to show that conditions (3) and (4) of the same definition also hold. We

will do this just for C(P1) and D(P1), since one can proceed in the same way for C(P2) and D(P2). To

check condition (3), it suffices to show that for every j ∈ C(P1), z−1(m1(x j+1)) = z−1(m1(x j)) + 1.
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Indeed, the positions of the elements corresponding to x j and x j+1 in every occurrence of P1, must be

consecutive. Thus, since s1 ∈P1 σ, the positions of m1(x j) and m1(x j+1) in σ, and consequently in z,

must be consecutive, because z is the reduction of s3, which is the union of s1 and s2. Also, if j ∈ D(P1),

then t j+1 = t j + 1, where s1 = (t1, . . . , tk1). Therefore, these two elements have consecutive values in

s3, as well, i.e., m1( j+ 1) = m1( j)+ 1. With that, we showed that m1,m2 :P1, P2 → P3. Now, it is easy

to check that s3 ∈P3 σ.

(⇐=) Let s3 ∈P3 σ, where s3 = (t1, t2, . . . , tk3) is an increasing vector, m1,m2 : P1, P2 → P3 and

P3 = (z,C(P3), D(P3)). Define s1 B t|m1,k1 and s2 B t|m2,k2 , where t|h,k B (th(1), th(2), . . . , th(k)). We

must show that t|m1,k1 ∈P1 σ. One can similarly show that t|m2,k2 ∈P2 σ. Condition (2) of Definition

3.4 implies that the elements of t|m1,k1 are in the same relative order in σ as the elements of P1. Now,

assume that j ∈ C(P1). We have to show that the positions of the elements tm1(x j) and tm1(x j+1) in σ

are consecutive. According to condition (3) of Definition 3.4, we have z(m1(x j+1)) = z(m1(x j)) + 1,

i.e., m1(x j) and m1(x j+1) have consecutive positions in z and z−1(m1(x j)) ∈ C(P3). Therefore, these

positions must be also consecutive inσ since s3 ∈P3 σ. Finally, assume that j ∈ D(P1). We have to show

that tm1( j+1) = tm1( j)+1. According to condition (4) of Definition 3.4, we must have that m1( j) ∈ D(P3)

and m1( j + 1) = m1( j) + 1. Since s3 ∈P3 σ, we have tm1( j) + 1 = tm1( j)+1 = m1( j + 1). □

Assume that f is a simple statistic associated with the pattern P1 and valuation function Q1Q ′1,

whereas g is a simple statistic associated with the pattern P2 and valuation function Q2Q ′2.
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Assume, also, that m1,m2 : P1, P2 → P3 for some m1,m2 and P3. If s3 = (t1, t2, · · · , tk3) ∈P3 σ and

w3 = (σ−1(t1), σ−1(t2), . . . , σ−1(tk3)), then let us define

Qm1,m2,Q1,Q2(s3) B Q1(t|m1,k1 , n)Q2(t|m2,k2 , n).

and

Q ′m1,m2,Q1,Q2(w3) B Q ′1(σ
−1(t|m1,k1), n)Q

′
2(σ

−1(t|m2,k2), n).

Theorem 3.7. Let Stat be the set of all permutation statistics thought of as functions f : ∪nS n → Q.

Then Stat is closed under the operations of point-wise scaling, addition and multiplication. Thus, if f ,

g ∈ Stat and a ∈ Q, then there exist permutation statistics ha, h+ and h∗ so that for all permutations

σ ∈ Stat,

a f (σ) = ha(σ),

f (σ) + g(σ) = h+(σ),

f (σ)g(σ) = h∗(σ).

Furthermore, we have the following inequalities for the degrees: d(ha) ≤ d( f ), d(h+) ≤ max{d( f ), d(g)}

and d(h∗) ≤ d( f ) + d(g).

Proof. The addition of two statistics is obviously a statistic by definition and thus h+ exists. Using this,

one can easily see that it suffices to show the existence of ha and h∗, when f and g are simple statistics.
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Here is the argument for the existence of ha. The existence of h∗ follows in a similar way. Assume that

ag(σ) is a statistic, for every simple statistic g. Then, when f =
m∑

j=1
f j, for some simple statistics f j, we

have that ha = a f = a
m∑

j=1
f j =

m∑
j=1

a f j is a sum of statistics and therefore is a statistic itself.

If f corresponds to the pattern P and the valuation function Q(s,w) = Q1(s)Q2(w), then let ha be the

simple statistic corresponding to the same pattern P and valuation function Q ′(s,w) = aQ1(s)Q2(w) =

Q ′1(s)Q2(w). Clearly, ha is a statistic. To establish the fact that the product of two simple statistics is

a statistic, we need Lemma 3.6. Let f and g have associated patterns P1, P2 and valuations functions

Q1Q ′1 and Q2Q ′2, respectively. For any positive integer n, let σ ∈ S n and consider

fP1,Q1(σ)gP2,Q2(σ) =
∑

s1∈P1σ

Q1(s1)Q ′1(σ
−1(s1))

∑
s2∈P2σ

Q2(s2)Q ′2(σ
−1(s2))

(by Lemma 3.6)
=

∑
P3

 ∑
s3∈P3σ

 ∑
m1,m2:P1,P2→P3

Qm1,m2,Q1,Q2(s3)Q ′m1,m2,Q1,Q2(σ
−1(s3))


 = ∑

P3

fP3,Q̃,

where

Q̃(s3) =
∑

m1,m2:P1,P2→P3

Qm1,m2,Q1,Q2(s3)Q ′m1,m2,Q1,Q2(σ
−1(s3))

for the fixed P1, P2 and P3. We get that the product f g is a finite sum of statistics and thus, it is a statistic

itself. Indeed, this sum is finite since the number of patterns P3 that one can get as a merge of P1 and

P2 is finite. Note that the bounds on the degrees of the statistics ha, h+ and h∗ follow directly from our

proof and the definitions. □

We will also need a generalization of Definition 3.4.



102

Definition 3.8. Let P1,P2, . . ., Pl be l patterns, where k is the size of the pattern P and for each i ∈ [l],

ki is the size of the pattern Pi. If we have the increasing functions m1 : [k1] → [k], m2 : [k2] → [k],

. . . , ml : [kl] → [k], then a merge of these l patterns corresponding to the listed functions is denoted by

m1,m2, . . . ,ml : P1, P2, . . . , Pl → P or by the shorthandMl : Πl → P. The pattern P in such a merge

will be a union of l subsequences, which are order-isomorphic to P1, P2, . . . , Pl and determined by the

functions m1,m2, . . . ,ml.

Similarly, for any σ ∈ S n one can establish an analogue of Lemma 3.6. We state this result without

a proof.

Lemma 3.9. Assume that we have the r patterns (P1,C(P1), D(P1)), (P2,C(P2), D(P2)), . . . ,

(Pr,C(Pr), D(Pr)). There is a one-to-one correspondence between the following sets.

{(s1, s2, . . . , sr) | s1 ∈P1 σ, s2 ∈P2 σ, . . . , sr ∈Pr σ}

↔ {s ∈P σ | m1,m2, . . . ,mr : P1, , . . . , Pr → P}.

Using this lemma, one can obtain analogously that the product of r statistics of degrees d1, . . . , dr is

a statistic of degree not more than
∑r

j=1 d j. We use this observation to obtain the following result.

Theorem 3.10. Let f be any statistic of degree m. Then, for any positive integer r,

M( f r, n) =
∑

−I≤i≤J

αi(n + i)!, (3.5)

where I and J are constants that satisfy −I ≥ −rm
2 , J ≤ mr and n ≥ I, and the αi’s are rational constants.
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Proof. Let f =
∑t

i=0 βi fPi,Qi . We have

M( f r, n) =
∑
σ∈S n

 t∑
i=1

βi fPi,Qi(σ)

r

=
∑
σ∈S n

∑
P∗
γ j

 ∑
s∈P∗σ

 ∑
Mr :Πr→P∗

r∏
i=1

Qi(t |mi,ki , σ
−1(t |mi,ki))




(by Lemma 3.9)
=

∑
σ∈S n

∑
P∗
γ j fP∗,Q̃(σ) =

∑
P∗
γ jM( fP∗,Q̃, n),

(3.6)

for some constants γ j ∈ Q. Each of the statistics fP∗,Q̃ is a summation of products of r statistics, with

each of them being of degree not more than m. Thus, fP∗,Q̃ is a statistic of degree not more than rm, for

every P∗. Therefore, by Theorem 3.2, we get

M( f r, n) =
∑

−L≤i≤rm

αi(n + i)! (3.7)

where L ≤ m
2 . □

In order to establish Lemma 3.12, which is an important special case of Theorem 3.10, we will need

the lemma below.

Lemma 3.11. Consider a merge of the vincular patterns P1 = (x,C(P1)) and P2 = (y,C(P2)) onto

P3 = (z,C(P3)), where x, y and z are of sizes k1, k2 and k3, respectively and the values of |C(P1)|,

|C(P2)| and |C(P3)| are c1, c2 and c3, respectively. Then,

k3 − c3 ≤ (k1 + k2) − (c1 + c2).



104

Proof. Part (3) of Definition 3.4 allows us to write the following:

k3 − c3 = (k1 + k2 − |m1([k1]) ∩ m2([k2])|) −
(
c1 + c2 − |{m1(xi) | i ∈ C(P1)} ∩ {m2(y j) | j ∈ C(P2)}|

)
=

(k1 + k2) − (c1 + c2) −
[
|m1([k1]) ∩ m2([k2])|− |{m1(xi) | i ∈ C(P1)} ∩ {m2(y j) | j ∈ C(P2)}|

]
.

Thus, it suffices to show that

|m1([k1]) ∩ m2([k2])|− |{m1(xi) | i ∈ C(P1)} ∩ {m2(y j) | j ∈ C(P2)}| ≥ 0,

but the latter is clearly true since C(P1) and C(P2) are subsets of [k1] and [k2], respectively. □

Theorem 3.12. If P is a vincular pattern of size k, such that |C(P)| = c, then

M(cntrP, n) =
∑

0≤i≤r(k−c)

αi(n + i)!, (3.8)

for n ≥ rk.

Proof. One can easily prove the following equality (Lemma 3.15, proved in the next section, gives a

generalisation):

M(cntP, n) =

(
n−c
k−c

)
k!

n!.
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Since
(
n−c
k−c

)
is a polynomial in n of degree k − c, the statement of the lemma holds, when r = 1. For

bigger values of r, we can look at Equation (3.6) and plug in t = 1, β1 = 1 and Q = 1 for all valuation

functions Q, as well as P1 = P2 = · · · = Pr = P . We will get that

M(cntrP, n) =
∑
P∗
δ jM(cntP∗ , n), (3.9)

where the summation is over all possible merges P∗ of r copies of P and where δ j are some rational

constants. Using Lemma 3.11, we can see that each of the patterns P∗ = (z,C(P∗)) is a vincular pattern

with |z| − |C(P∗)| ≤ r(k − c). Therefore, each of the aggregates M(cntP∗ , n) can be written in the form,

as in the right side of Equation (3.8). After we substitute these forms in the right side of Equation (3.9)

and regroup, we see that the claim holds. □

Theorem 3.10 and Theorem 3.12 generalize a result of Zeilberger [145, Main formula]. What he

proved is that for any classical pattern P of size k, E(cntrP) is a polynomial of degree rk. In the same

article, he used this observation to get the polynomials for the second and the third moments of the

statistic cntP, for various classical patterns P. To do that, he implemented a computer program that fits

the actual values of this statistic for 0, 1, . . . , rk to a polynomial of degree rk. Below, we give explicit

expressions for the aggregates when r = 2 (and respectively, the second moments) of some of the

statistics introduced in Section 1.5. We use the same approach by fitting small values of these statistics

to the right side of Theorem 3.10 or Theorem 3.12, in order to find the coefficients αi.

Example 3.13. (formulas for aggregates of higher moments)
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a) Second moment of the double ascents.

M(cnt2123, n) = −
1

12
n! −

1

15
(n + 1)! +

1

36
(n + 2)!.

b) Second moment of cntP∗ , where P∗ = (312, {2}, {2}).

M(cnt2P∗ , n) =
1

2
n! −

9

28
(n + 1)! +

29

672
(n + 2)! +

11

10080
(n + 3)! −

1

45360
(n + 4)!.

Several important simple statistics have unit valuation function associated to them, i.e., Q(s,w) = 1.

For these cases, we give the following important corollary from Theorem 3.10, which is an analogue of

[96, Proposition 3.5] and will be substantially used in the next two sections.

Corollary 3.14. Let P be a pattern of size k with |C(P)| = c, |D(P)| = d and unit valuation function.

Then,

M(cntrP, n) =
∑
k̃,c̃,d̃

w(r)
k̃,c̃,d̃

(
n − c̃
k̃ − c̃

)(
n − d̃
k̃ − d̃

)
(n − k)!, (3.10)

where w(r)
k̃,c̃,d̃

is the number of ways to merge r copies of P and get a pattern P∗ of size k̃, with |C(P∗)| = c̃,

|D(P∗)| = d̃ and where k ≤ k̃ ≤ rk, c ≤ c̃ ≤ rc and d ≤ d̃ ≤ rd.

Proof. Take Equation (3.6) in the proof of Theorem 3.10 and plug in t = 1, β1 = 1, Q = 1 for

all valuation functions Q and P1 = P2 = · · · Pr = P. Then, M(cntrP, n) =
∑

P∗ γ jM( fP∗,Q̃, n) =∑
P∗ γ

′
j M(cntP∗ , n), for some rational constants γ ′j . In addition, use Lemma 3.15 to get that

M(cntP, n) =

(
n−c̃
k̃−c̃

)(
n−d̃
k̃−d̃

)
n(k̃)

n! =
(
n − c̃
k̃ − c̃

)(
n − d̃
k̃ − d̃

)
(n − k̃)!,
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for every pattern P of size k̃, with |C(P)| = c̃ and |D(P)| = d̃. □

3.3 Descents and minimal descents: explicit formulas for the higher moments

The results from the previous section can be used to obtain an explicit formula for the r-th moment

of some permutation statistics. In this section, we illustrate how this can be done for the descents and

the minimal descents statistics. We will use the following simple lemma.

Lemma 3.15. For any bivincular pattern P of size k, such that |C(P)| = c and |D(P)| = d,

E(cntP, n) =

(
n−c
k−c

)(
n−d
k−d

)
n(k)

.

Proof. Let I be the set of possible positions for an occurrence of P in a permutation of size n. Similarly,

let J be the set of possible values of the numbers in such an occurrence. By linearity of expectation, we

have that

E(cntP, n) =
∑

i∈I, j∈J

Xi, j,

where the random variable Xi, j B 1, if the set of possible values with index j are at the set of possible

positions with index i, and these values are in the relative order determined by the permutation P.

Otherwise, Xi, j B 0. Note that when we choose a permutation of size n at random, E(Xi, j) =
1

n(k)
. Also,

note that |I| =
(
n−c
k−c

)
and |J| =

(
n−d
k−d

)
. □

Consider the statistic des = cnt21. It is well known that the number of permutations of size n

having k descents is given by the Eulerian numbers and the corresponding distribution is called Eulerian

distribution. A comprehensive source dedicated to Eulerian numbers is the book [119]. Its preface and
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the notes at the end of Chapter 1 provide a good historical overview. A recent article by Hwang et

al. gives a complicated recurrence relation as a way to calculate the higher moments of the Eulerian

distribution and a family of other distributions with generating functions satisfying a similar relation

(see [87, Section 2.2]). Below, we give a direct summation formula for the r-th moment of the Eulerian

distribution.

Theorem 3.16. Consider a random permutation of size n and r ≥ 1. Then,

E(desr) =
min(n,2r)∑

m=2

⌊m
2 ⌋∑

u=1

(
m−u∑
w=0

(−1)w
(
m−u

w

)
(m − u − w)r

)  ∑
q1+···+qu=m

qi≥2

(
m

q1,...,qu

) (n−(m−u)
u )

m! .

Proof. Use Corollary 3.14 and note that for P = 21, d = 0 and c = 1. Let us find the numbers w(r)
k̃,c̃

for the pattern 21. We will need to sum over all possible merges P∗ of r copies of P, depending on

their size k̃ and the value c̃ of |C(P∗)|. Instead of k̃, we will write m. Any of the patterns P∗ can have

between m = 2 and m = 2r letters. For a fixed m, any such pattern can be comprised of u segments

of letters at consecutive positions, where 1 ≤ u ≤ ⌈m
2 ⌉. For example, q = 43 61 752 has size m = 7

and is comprised of three segments of letters at consecutive positions, namely 43, 61 and 752. Note

that getting a pattern P with u segments requires merging at least m − u copies of the pattern 21 since

a segment of size h requires merging at least h − 1 copies of 21. For instance, the segment 752 in the

pattern q above can be obtained after merging multiple copies of 21, corresponding either to 75 or to 52

and at least one copy corresponding to each of them. In general, for a merge with u segments, each of

the r copies of the descent pattern 21 must correspond to one out of m− u pairs of consecutive elements

and we must have at least one copy for each of these pairs. The inclusion-exclusion principle gives us
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m−u∑
w=0

(−1)w
(
m−u

w

)
(m − u − w)r ways to achieve that. In addition, every segment must be a decreasing

sequence of elements. If the lengths of the segments in the pattern P∗ are denoted by q1, . . . , qu, then

we must have q1 + · · ·+ qu = m and qi ≥ 2 for each 1 ≤ i ≤ u. Thus, for every such composition of m,

we can choose the numbers in each of the segments in
(

m
q1,...,qu

)
ways. Finally, for every pattern P∗ with

u segments, |C(P∗)| = m − u. Therefore

w(r)
k̃,c̃

= w(r)
m,m−u =

⌊m
2 ⌋∑

u=1

m−u∑
w=0

(−1)w
(
m − u

w

)
(m − u − w)r)

 ∑
q1+···+qu=m

qi≥2

(
m

q1, . . . , qu

)

and M(cntP∗ , n) =
(n−(m−u)

u )
m! n!, by Lemma 3.15. Our goal is to find E(desr), so we are dividing both

sides by n! to obtain the desired formula. □

Similarly, we can obtain the moments of the minimal descents statistic cntP, where P = (21, {1}, {1}).

These are descents, such that the two numbers in them are consecutive. In the literature, this statistic is

also known as adjacency and we will denote it by adj. The following Theorem will be used in Section

3.4.3.

Theorem 3.17. Consider a random permutation of size n and r ≥ 1. Then,

E(adjr) =
min(n,2r)∑

m=2

⌊m
2 ⌋∑

u=1

((
m−u∑
w=0

(−1)w
(
m−u

w

)
(m − u − w)r

) (
m−u−1

u−1

)
u! (

n−(m−u)
u )

2

n(m)

)
.

Proof. Proceed as in the proof of Theorem 3.16. One difference is that now, for a pattern P∗ of size

m with u segments, the values of the numbers in each segment must be consecutive. Thus, instead of
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∑
q1+···+qu=m

qi≥2

(
m

q1,...,qu

)
possible ways to determine the numbers in a pattern with u segments, we have just

u! such segments for every solution of q1 + · · · + qu = m, where qi ≥ 2. By using the stars and bars

model, one can see that the number of these solutions is exactly
(
m−u−1

u−1

)
. In addition, one can see that

|C(P∗)| = |D(P∗)| = m − u, for every pattern P∗ with u segments and therefore by Lemma 3.15, we get

M(cntP∗ , n) =
(n−(m−u)

u )
2

n(m)
. □

3.4 Central limit theorems for cntP.

In this section, we will reprove some limiting laws for the random variable cntP, which counts the

number of occurrences of the pattern P in a given permutation.

3.4.1 Classical patterns

Recall that if C(P) and D(P) are empty, then P is a classical pattern. The limiting normality of cntP,

when P is a classical pattern was first established by Bóna [24]. He uses the method of dependency

graphs and the Janson dependency criterion defined in Section 1.5.2. This method is used when we

have a set of partially dependent random variables, for every value of n, and we want to prove that the

sum of these variables has a certain asymptotic distribution. Assume that σ B P is a classical pattern

and that Xn B cntσ(π) for π ∈ S n chosen uniformly at random. Then Xn =
(n

k)∑
i=1

Xn,i, where Xn,i is an

indicator, for every i ∈ [
(
n
k

)
]. In particular, if we fix some ordering of the

(
n
k

)
size-k subsequences of π

by the numbers in [
(
n
k

)
], then for any i ∈ [

(
n
k

)
], Xn,i = 1, if the subsequence of π with number i is an

occurrence of the pattern σ. Otherwise, Xn,i = 0. Indeed, for any n, not all of the variables Xn,i are

independent.

Bóna applied the Janson criterion (Theorem 1.55) to the family
{

Xn,i | i = 1, 2, . . . ,
(
n
k

)}
. A main

fact that he uses when checking the criterion is a lower bound on the variance of Xn. In this subsec-
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tion, we reprove this lower bound by using Corollary 3.14 and Lemma 3.20 given below, which was

established by Burstein and Hästö [33]. This gives a new proof that cntP has asymptotically normal

distribution, when P is a classical pattern. We also provide a new interpretation of Lemma 3.20.

Let Aσ(r) denote the set of possible merges of two copies of the pattern σ, which is of size k, and

where the resulting pattern is of size r. Formally, Aσ(r) can be defined as the set of triples (π,m1,m2),

such that m1,m2 : σ,σ → π and π ∈ S r. However, it will be more convenient for us to look at the

subsequences of π formed by the images of the functions m1 and m2, i.e., we will use the following

equivalent definition.

Definition 3.18. For σ ∈ S k, let

Aσ(r) B {(π, x, y) | π ∈ S r, x, y ∈ subs(π), red(x)=σ, red(y)=σ, |x ∩ y| = 2r − k},

where subs(π) denotes the set of the subsequences of the permutation π.

Example 3.19. Ifσ is the classical pattern 312, then A312(5) is a set of triples containing (54213, 523, 413),

since red(523) = 312, red(413) = 312 and these two subsequences have exactly one common element

(see Table III).

Let aσ(r) B |Aσ(r)|.

Lemma 3.20 (Burstein and Hästö, [33, Lemma 4.3]). For any classical pattern σ = σ1 · · ·σk,

aσ(2k − 1) >
(
2k − 1

k

)2
. (3.11)
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5 4 2 1 3

5 2 3

4 1 3

TABLE III: Merge of two copies of the pattern 312.

Example 3.21. Let k = 2 and σ = 21. Then,
(
2k−1

k

)2
= 9 and aσ(2k − 1) = a21(3) = 10, since A21(3)

consists of the ten triples (π, x, y) given below:

π = 321: (321, 32, 31), (321, 31, 32), (321, 32, 21), (321, 21, 32), (321, 31, 21), (321, 21, 31).

π = 312: (312, 31, 32), (312, 32, 31).

π = 231: (231, 21, 31), (231, 31, 21).

Now, we are ready to prove the bound for the variance of cntσ used by Bóna.

Theorem 3.22. Let Xn B cntσ(π) be the number of occurrences of a classical pattern σ ∈ S k in a

random permutation π ∈ S n. Then, there exists c > 0, such that for all n,

Var(Xn) ≥ cn2k−1.

Proof. Since σ is a classical pattern, Lemma 3.15 gives us that E(Xn) =
(n

k)
k! . Using this fact and

Corollary 3.14, we obtain

Var(Xn) = E(X2n) − E
2(Xn) =

[
aσ(2k)

( n
2k)

(2k)! + aσ(2k − 1)
( n
2k−1)

(2k−1)! + O(n
2k−2)

]
−

(n
k)
2

(k!)2 .
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We know that
(
n
k

)
=

(n)k
k! and that (n)k =

k∑
i=0

s(k, i)ni, where s(k, i) are the Stirling numbers of the first

kind. We have s(k, i) = (−1)k−i
[
k
i

]
, where

[
k
i

]
is the number of permutations in S k with i disjoint cycles.

In particular,
[

k
k−1

]
=

(
k
2

)
. Therefore,

Var(Xn) = [aσ(2k)
n2k−(2k2 )n2k−1

((2k)!)2 + aσ(2k − 1)
n2k−1)

((2k−1)!)2 ] −
n2k−2(k

2)n2k−1

(k!)4 + O(n2k−2).

It is easy to see that aσ(2k) =
(
2k
k

)2
since a merge of size 2k of two copies of σ is uniquely determined by

the set of k positions among [2k], where the first copy will be placed, and the set of k values among [2k]

at these positions. The values and the positions for the letters of the second copy are those remaining.

Then, one can see that the coefficient of Var(Xn) in front of n2k is 0 and the coefficient in front of n2k−1

is

−
(
2k
k

)2(2k
2

)
((2k)!)2

+
aσ(2k − 1)
((2k − 1)!)2

+
2
(

k
2

)
(k!)4

.

Simplify the last expression to get that this coefficient is positive, only if

aσ(2k − 1) >
(
2k − 1

k

)2
,

which follows from Lemma 3.20. □

It is interesting to note that Burstein and Hästö obtained the same bound for the variance of Xn in

[33], but they did not state that it implies the central limit theorem for cntP, when P is an arbitrary

classical pattern. At the same time, in [24], Bóna proved the bound independently and did not cite the

work of Burstein and Hästö.
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Next, we give an interpretation of Lemma 3.20, which may be useful to obtain a combinatorial proof

for it. Let

Aσ,σ ′(r) B {(π, x, y) | π ∈ S r, x, y ∈ subs(π), red(x)=σ, red(y)=σ ′, |x ∩ y| = 2r − k},

be the set of merges of size r for the clssical patterns σ ∈ S k and σ ′ ∈ S k. Let aσ,σ ′(r) B |Aσ,σ ′(r)|.

Theorem 3.23. Lemma 3.20 is equivalent to

aσ(2k − 1) > E(aσ,σ ′(2k − 1)), (3.12)

where σ ∈ S k is a fixed classical pattern and σ ′ ∈ S k is chosen uniformly at random.

Proof. First, note that
(
2k−1

k

)2
, which is the right-hand side of Equation (3.11) in Lemma 3.20, can be

written as (2k−1k )
k

(
2k−1

k

)
k. Then, observe that

(
2k−1

k

)
k is the number of ways to choose the k positions from

[2k − 1] for the numbers of the subsequence x (that is order isomorphic to σ), as well as the position of

the common element c for x and the subsequence y (that is order-isomorphic to σ ′). For each of these

choices, we can select the values of the numbers of x at the already selected positions in
(
2k−1

k

)
ways.

Once this choice is made, the values of x, y and c are uniquely determined. Suppose that c has to be at

position p in y. Since σ ′ is chosen uniformly at random, we have probability 1k for the element c to be
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at position p in y. This gives (2k−1k )
k for the expected number of merges when we know the positions of

the elements of x and the position of c. Therefore,

E(aσ,σ ′(2k − 1)) =

(
2k−1

k

)
k

(
2k − 1

k

)
k =

(
2k − 1

k

)2
.

□

Interestingly, if σ is fixed, then aσ,σ ′(k, 2k − 1) does not necessarily reach its maximum when

σ ′ = σ. For instance, a1324,1234(4, 7) > a1324,1324(4, 7). However, since we know that Lemma 3.20

holds, Theorem 3.23 gives us that when σ ′ = σ, we always get a value greater than the expectation over

σ ′.

3.4.2 Vincular patterns

Recall that if D(P) is empty, then P is a vincular pattern and to denote it, we write P with the

positions i and i + 1 of P underlined, for every i ∈ C(P). The blocks of a vincular pattern are segments

defined by C(P). For example, if P = (135246, {1, 2, 5}, ∅) = 135246, then C(P) has three blocks,

namely 135, 2 and 46.

The limiting normality of cntσ, when σ is a vincular pattern was first established by Hofer [84].

She proposes two different approaches to bound the Kolmogorov distance between the distribution of

cntσ(π), for a randomly chosen π ∈ S n, and a variable with a standard normal distribution. The Kol-

mogorov distance between two distributions was defined at the end of Section 1.5.2 togeter with a

lemma that shows that bounding this distance is a sufficient condition for asymptotic normality. Both of

these approaches are based on dependency graphs. To apply them, Hofer needs a lower bound for the
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variance of cntσ, i.e., to prove a more general version of Theorem 3.22, which holds for any vincular

pattern. Hofer obtained such a generalization by a rather complicated recurrence based on the law of

total variance.

Theorem 3.24 (Hofer [84]). Let Xn = cntσ be the number of occurrences of a vincular pattern σ with

j blocks, in a random permutation of size n. Then, there exists c > 0, such that for all n,

Var(Xn) ≥ cn2 j−1.

Below, we show that this more general bound is equivalent to a lemma generalizing Lemma 3.20

that has an analogous interpretation to the one given by Theorem 3.23.

If σ is a vincular pattern of size k with j blocks, then we denote by bσ(m, j ′) the number of merges

of two copies of σ, where the resulting pattern is of size m and has j ′ blocks.

Example 3.25 (merge of two copies of a vincular pattern). Let σ = 431 52. This pattern has size k = 5

and j = 2 blocks. Table Table IV gives an example of a merge of two copies of σ. The resulting pattern

6531 84 72 is of size m = 8 and has j ′ = 3 blocks.

6 5 3 1 8 4 7 2

6 5 3 8 4

5 3 1 7 2

TABLE IV: Merge of two copies of the pattern 431 52.
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If σ has blocks of sizes α1, . . . , α j, then let Mσ = max
1≤i≤ j

{αi} and let [xk]P denote the coefficient of the

polynomial P in front of xk.

Theorem 3.26. Theorem 3.24 is equivalent to

Mσ∑
l=1

(2k)lbσ(2k − l, 2 j − 1) >
(
2k
k

)(
2 j − 1

j

)
j. (3.13)

Proof. We will use that the expected number of occurrences of a vincular pattern σ of size k, with j

blocks, in a random permutation of size n is
(n−(k− j)

j )
k! . This follows from Lemma 3.15 and the fact that

|C(σ)| = k − j. Apply Corollary 3.14 and note that if m1,m2 : σ,σ→ P and P has 2 j − 1 blocks, then

exactly one block of the first copy of σ was merged with one block of the second copy of σ. Therefore,

|P| = k̃ ∈ [2k − Mσ, 2k] and |C(P)| = k̃ − (2 j − 1). We have

Var(Xn) = E(X2n) − E
2(Xn) =

b(2k, 2 j)

(
n−(2k−2 j)
2 j

)
(2k)!

+

Mσ∑
l=1

bσ(2k − l, 2 j − 1)

(
n−(2k−l−2 j+1)

2 j−1

)
(2k − l)!


−

(
n−(k− j)

j

)2
(k!)2

+ O(n2 j−2).

We will again use that
(
n
k

)
=

(n)k
k! and that (n)k =

k∑
i=0

s(k, i)ni, where s(k, i) = (−1)k−i
[
k
i

]
are the

Stirling numbers of the first kind and
[
k
i

]
is the number of permutations in S k with i disjoint cycles. Since[

k
k−1

]
=

(
k
2

)
and bσ(2k, 2 j) =

(
2k
k

)(
2 j
j

)
=

(2 j)!(2k)!
(k! j!)2 , we get the following.
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Var(Xn) =

(2 j)!(2k)!
(k! j!)2

(n − 2k + 2 j)2 j

(2 j)!(2k)!
+

Mσ∑
l=1

bσ(2k − l, 2 j − 1)
(n − (2k − l − 2 j + 1))2 j−1

(2k − l)!(2 j − 1)!

 − (n − k + j)2j
(k!)2( j!)2

+ O(n2 j−2)

=
1

(k! j!)2
[(n − 2k + 2 j)2 j −

(
2 j
2

)
(n − 2k + 2 j)2 j−1 − ((n − k + j) j −

(
j
2

)
(n − k + j) j−1 + O(n j−2))2]

+

Mσ∑
l=1

bσ(2k − l, 2 j − 1)
(n − 2k + l + 2 j − 1)2 j−1 + O(n2 j−2)

(2k − l)!(2 j − 1)!
+ O(n2 j−2)

=
1

(k! j!)2
[n2 j − (2k − 2 j)n2 j−1 − j(2 j − 1)n2 j−1 − (n j − (k − j)n j−1 −

j( j − 1)
2

n j−1 + O(n j−2))2]

+

Mσ∑
l=1

bσ(2k − l, 2 j − 1)
n2 j−1

(2 j − 1)!(2k − l)!
+ O(n2 j−2).

After simplifying, we get that [n2 j−1]Var(Xn) > 0 if and only if

− j2

(k! j!)2
+

Mσ∑
l=1

bσ(2k − l, 2 j − 1)
(2k − l)!(2 j − 1)!

> 0⇐⇒
Mσ∑
l=1

(2k)lbσ(2k − l, 2 j − 1) >
(
2k
k

)(
2 j − 1

j

)
j.

□

Note that when j = k, we have Mσ = 1 and bσ(2k − 1, 2 j − 1) = aσ(2k − 1), so we get Lemma

3.20. When j = 1, Equation (3.13) is trivial, since Mσ = k and on the left, just one of the summands

(when l = k) is (2k)k, while on the right we have
(
2k
k

)
< (2k)k.

We were not able to prove Equation (3.13) for vincular patterns with arbitrary number of blocks.

However, we can give an interpretation of this inequality. Note that when one merges two copies of a

pattern with j blocks and the obtained pattern has 2 j − 1 blocks, then the blocks of the two copies can

be aligned in exactly
(
2 j−1

j

)
j ways. These alignments will be called configurations. For example, when

j = 2, there are
(
3
2

)
2 = 6 configurations shown below (the ■ symbol represents a block):
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■ ■

■ ■

■ ■

■ ■

■ ■

■ ■

■ ■

■ ■

■ ■

■ ■

■ ■

■ ■

Figure 15: The 6 possible configurations, when merging two copies of a pattern with two blocks.

For instance, the configuration corresponding to the merge shown in Table IV is the top-left con-

figuration shown on Figure 15. It is not difficult to see that the conjecture we give next would imply

Equation (3.13) and respectively Theorem 3.24 and the CLT for vincular patterns.

Conjecture 3.27. For every vincular pattern σ with j blocks and every 1 ≤ l ≤ Mσ,

b ′σ(2k − l, 2 j − 1) >

(
2k−l

k

)
k(l)

cσ,l, (3.14)

where cσ,l B is the number of possible configurations for a merge of two copies of σ, such that the

minimum of the sizes of the two merged blocks is l, and b ′σ(2k − l, 2 j − 1) is the number of merges

of two copies of σ with l common elements and 2 j − 1 blocks, such that they correspond to one of the

same cσ,l configurations.

Indeed, it suffices to note that
∑Mσ

l=1 cσ,l =
(
2 j−1

j

)
j and that (2k−l

k )
k(l)

=
(2kk )
(2k)l

. Thus, if we sum Equa-

tion (3.14) over l, we get Equation (3.13) with bσ replaced with b ′σ. Since bσ(2k − l, 2 j − 1) ≥

b ′σ(2k − l, 2 j − 1), for all l, j and k, Conjecture 3.27 would indeed imply Equation (3.13). The ra-

tio (2k−l
k )

k(l)
is the expected number of merges when we fix one of the cσ,l configurations and when we
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merge σ and σ ′, where σ ′ ∈ S k is a permutation selected uniformly at random and σ ′ has the same

block structure as σ. Therefore, Equation (3.14) can be written as

b ′σ(2k − s, 2 j − 1) > E(b ′σ,σ ′(2k − s, 2 j − 1)), (3.15)

where b ′σ,σ ′(2k − s, 2 j − 1) is defined analogously to aσ,σ ′(2k − 1).

3.4.3 Bivincular patterns

In the general case when P is a pattern for which D(P) might be non-empty, we do not necessarily

have asymptotic normality of the distribution of cntP. For example, the adjacency statistic adj introduced

in Section 3.3 and corresponding to the bivincular pattern (21, {1}, {1}), has Poisson distribution with

mean 1. This follows from a result proved, independently by Wolfowitz [143] and Kaplansky [94] in

the 1940s. They showed that if X denotes the pairs of numbers a, a + 1 that have consecutive positions

in a permutation in S n that is chosen uniformly at random, then X is asymptotically Poisson distributed

with mean 2. In 2014, Corteel et al. [40] give another proof of this result that uses the method of Chen,

which is used to prove convergence to Poisson distribution and which is an adaptation of the method of

Stein for convergence to normal distribution [136]. The article [7] contains an accessible introduction

and good examples.

Here, we reprove the fact that the asymptotic distribution of adj is Poisson with mean 1 by using

Theorem 3.17 and the Fréchet-Shohat Theorem given below.
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Theorem 3.28 ([21, Theorem 30.2]). Suppose that the distribution of X is determined by its moments

and that Xn have moments of all orders. Suppose also that limn→∞ E(Xr
n) = E(Xr), for r = 1, 2, . . ..

Then, Xn converges in distribution to X.

Definition 3.29. The discrete random variable X B Po(λ) is said to have a Poisson distribution, with

parameter λ > 0, if

P(X = k) =
λke−λ

k!
, for k = 0, 1, . . . ·

Theorem 3.30. As n → ∞, adj converges in distribution to Po(1).

Proof. The Poisson measure is determined by its moments [21, Theorem 30.1]. Because of Theorem

3.28, it suffices to show that E(adjr) converges to the r-th moment of Po(1), when n → ∞. A well-

known fact is that the r-th moment of the Poisson distribution with mean 1 is the r-th Bell number

Br =
r∑

k=1
S (r, k), where S (r, k) is the Stirling number of the second kind (for more details, see [122]).

Looking at the double sum expression for E(adjr) obtained in Theorem 3.17, we see that every summand

is a product of terms not including n and the term
((n−(m−u)

u ))2

n(m)
isO(1), unless u = m

2 . Thus, when n → ∞,

we can look only at the terms corresponding to even values of m, i.e., m = 2m1 for some m1 = 1, . . . , r

and u = m
2 = m1. Since lim

n→∞ (n−m1
m1 )

2

n(2m1)
= 1

(m1!)2
and

k∑
i=0

(−1)i
(
k
i

)
(k − i)r = k!S (r, k) , we obtain the

following.

lim
n→∞E(adjr) =

r∑
m1=1

 m1∑
w=0

(−1)w
(
m1
w

)
(m1 − w)r

 m1!
1

(m1!)2
=

=

r∑
m1=1

m1∑
w=0

(−1)w
(
m1
w

)
(m1 − w)r

m1!
=

r∑
m1=1

S (r,m1) = Br. □



CHAPTER 4

PERMUTATION PATTERNS WITH CONSTRAINED GAP SIZES

In this chapter, we investigate some facts related to the distant patterns(DPs) introduced in Sec-

tion 1.6. Recall that DPs allow arbitrary minimum requirements for the size of the gap between the

numbers in the permutation, corresponding to two consecutive letters of the pattern.

4.1 Two basic facts about distant patterns

Avoidance of classical distant patterns can be formulated as a statement about simultaneous avoid-

ance of classical patterns. For example, avoiding 1□2 is equivalent to the simultaneous avoidance of the

3-letter classical patterns {123, 132, 213}. In the general case, we have the proposition below, where

x(y) B x(x − 1) · · · (x − y + 1) = x!
(x−y)!

denotes the falling factorial. We leave the formal proof of this proposition to the reader.

Proposition 4.1. The avoidance of q = □r0q1□r1q2□r2 · · ·□rk−1qk□
rk , where

k∑
j=0

r j = S , is equivalent to

the simultaneous avoidance of (S + k)(S ) classical patterns of size S + k.

In fact, we can restrict our attention to DPs without leading or trailing squares.

Theorem 4.2. For any r1, r2 > 0 and a distant pattern q, we have

avn(□
r1q□r2) = n(r)avn−r(q), (4.1)

where r B r1 + r2.
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Proof. If σ = σ1σ2 · · ·σn ∈ Avn(□
r1q□r2), then

red(σr1+1 · · ·σn−r2) ∈ Avn−r(q).

Conversely, any σ = σ1σ2 · · ·σn for which σ1, . . . , σr1 , σn−r2 , . . . , σn are any r numbers in [n] and

for which red(σr1+1 · · ·σn−r2) ∈ Avn−r(q), would be such that σ ∈ Avn(□
r1q□r2), since any possible

occurrence of q in σ would have either fewer than r1 other elements in front of it or fewer than r2

elements after it. □

4.2 Classical DPs of size 2

By Theorem 4.2, it suffices to consider 1□2 and 2□1 as the only DPs of size 2. One can obviously see

that avn(2□1) = avn(1□2), by applying the reverse map. Therefore we have only one Wilf-equivalence

class here. The enumeration of this class appears in the seminal paper of Simion and Schmidt [129],

where they showed that avn(123, 132, 213) = Fn+1 (see Theorem 4.1). Below, we present a proof in the

language of DPs.

Theorem 4.3 (Simion and Schmidt [129]). For n ≥ 3,

avn(2□1) = Fn+1, (4.2)

i.e., the (n + 1)st Fibonacci number.

Proof. If p1p2 · · · pn ∈ Avn(2□1), then either pn = n or pn−1 = n since otherwise n will participate in

an inversion that is not of consecutive letters. If pn = n then p1p2 · · · pn−1 must be in Avn−1(2□1), and
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for each permutation in Avn−1(2□1), we obtain a permutation in Avn(2□1) after appending the letter n

at the end. Thus, we have avn−1(2□1) permutations in Avn(2□1) ending with n. If pn−1 = n, then we

must have pn = n−1 to prevent n−1 from forming a prohibited inversion with pn. Thus, in this second

case we must have pn−1 = n and pn = n − 1 and the prefix p1p2 · · · pn−2 must be a permutation in

Avn−2(2□1). For each such permutation in An−2(2□1), we obtain a new one in Avn(2□1) by appending

n and then n − 1 to it. Therefore avn(2□1) = avn−1(2□1) + avn−2(2□1). It remains to note that

av3(2□1) = 3 and av4(2□1) = 5. □

One can consider more general settings for DPs and look at bigger values of the maximal distance

between two consecutive letters of a pattern. Recall that Avn(2□
r1) is the set of all p1p2 · · · pn ∈ S n

with no inversion (pi, p j), such that |i − j| > r. Obviously, avn(2□
m1) = n! for n ≤ m + 1 and

avn(2□
01) = avn(21) = 1. The theorem below addresses the general case.

Theorem 4.4. The permutations in Avn(2□
r1) are in one-to-one correspondence with the permutations

in S n for which, when written in a cycle notation, any two elements in a cycle differ by at most r.

Proof. Let X = Avn(2□
r1) be the set of all permutations in S n that do not have inversions at distance

greater than r in their one-line notation. Let Y be the set of those permutations in S n for which any two

elements in the same cycle differ by at most r. We will describe a bijective map f : X → Y . Consider

p = p1p2 · · · pn ∈ X. We will show how to obtain the standard form of f (p) written in cycle notation,

i.e., the minimal element of every cycle is at its first position and the cycles are ordered in increasing

order of their minimal elements. Below is the description of f .
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The number p1 is at position 1, so let us look at the set of positions of all numbers with which p1 is in

inversion: 1, 2, · · · , p1−1. Denote their positions with i1, i2, · · · , ip1−1, respectively. These positions are

not bigger than r + 1, since p ∈ X. Then take (1, ip1−1, ip1−2, · · · , i1) to be the first cycle in the standard

form of the cycle decomposition for f (p). Then, let j be the minimal number that is not already used in

this cycle decomposition, and let the numbers p j − 1, · · · , p1+ 1 be at positions jp j−1, jp j−2, · · · , jp1+1.

Take ( j, jp j−1, jp j−2, · · · , jp1+1) as the next cycle in the standard form of the cycle decomposition for

f (p) and continue in the same way afterwards. Note that the length of some of those cycles might be 1.

Here are two examples:

• If n = 9, r = 3 and p = 352149867, then f (352149867) = (134)(25)(6798).

• If n = 8, r = 4 and p = 41352867, then f (41352867) = (1352)(4)(687).

Obviously, f maps each σ ∈ X to a permutation f (σ) such that any two numbers in the same cycle

of f (σ) differ by at most r, since these two numbers correspond to indices of two numbers, in the

one-line notation of σ, which are in inversion in σ ∈ X. To prove that f is indeed a bijection, we will

describe its inverse. Consider π ∈ Y in its standard cycle decomposition form. If the first cycle of π is

(π1π2 · · · πi1), then put the number i1 in the first place, then i1−1 at position π2, i1−2 at position π3 and

so on. The number 1 will be placed at position πi1 . Note also that π1 is always 1. Next, go to the next

cycle (π j1π j2 · · · π ji2 ). We will determine the positions of the next i2 numbers: i1 + 1, i1 + 2, · · · , i1 + i2.

We can see that π j1 must be the least integer not occurring in the first given cycle. We will place at this

position, the number i1 + i2. Then, i1 + i2 − 1 should be placed at position π j2 , i1 + i2 − 2 at position

π j3 and so on. One can use the two given examples above for verification. □
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The sequences of the numbers avn(2□
r1), for different fixed values of n and r are respectively rows

and columns of the table described in [118, A276837].

4.2.1 Recurrence formula for Fn+1 = avn(1□2)

While trying to obtain a general enumeration approach when dealing with DPs, we used a technique

which helped us to obtain a recurrence formula for the number of permutations avoiding the distant

pattern 1□2, i.e., a new recurrence formula for the Fibonacci numbers (see Theorem 4.3). We describe

this result in the current section. The same technique can be used when trying to enumerate the set of

avoiders for other DPs.

The idea is that almost all permutations containing a given distant pattern can be obtained by first

taking a permutation containing the corresponding classical pattern and then inserting additional num-

bers between some of the letters (where we have the □ symbol) for a certain occurrence of this classical

pattern. Let us describe this more concretely with the following algorithm that we will use for the pattern

1□2. Recall that Cm(p) B S m \ Avm(p), for any pattern p.

Algorithm 1

1. For a given n ≥ 3 and j ∈ [n], take any π ∈ Cn−1(12).

2. Find the leftmost 1 that is part of a classical 12-pattern and insert the number j immediately

after it.

3. Increase by 1 the numbers j, j+1, . . . , n−1, except the j that we just inserted (unless j = n,

π contains another j).

This algorithm defines a map g : An−1 → Bn, where An−1 B Cn−1(12) × [n] and Bn B Cn(1□2).
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Example 4.5. g(3412, 2) = 42513. The leftmost occurrence of the pattern 12 in 3412 is by the first two

letters, 3 and 4. Therefore we insert j = 2 immediately after the letter 3 and then increase the 2, 3 and 4

in the original permutation. Note that the added number j always keep its value in the final image.

We will first need to show that this map is not far from being injective.

Theorem 4.6. No permutation in Bn = Cn(1□2), the range of the map g, is the image of more than two

different elements of An−1 = Cn−1(12) × [n].

Proof. Assume the opposite. Let π = g(π1, j1) = g(π2, j2) = g(π3, j3) for three different tuples

(π1, j1), (π2, j2), (π3, j3) ∈ An = Cn−1(12) × [n]. We can see that j1, j2 and j3 must be different since

if two of them, say j1 and j2, are equal then obviously π1 = π2 and we will not have different tuples.

Now, we know that without loss of generality 1 < c j1 < c j2 < c j3 are three different positions for the

three different numbers j1, j2, j3 in the final permutation π. By step 2 of Algorithm 1, after removing

j1 from π, the first occurrence of the classical pattern 12, should be some πxπy, where x = c j1 − 1.

Similarly, after removing j2, the first such occurrence should begin at position c j2 − 1 > c j1 − 1, but this

is only possible if the position y = c j2 since if this is not the case then πxπy would be an occurrence of

12 that begins before position c j2 − 1. However, after removing j3 from π (note that c j3 > c j2), the first

occurrence of 12 should begin at position c j3 − 1 > c j1 − 1. This is a contradiction. □

There are many permutations in Bn which are the image of g for two different elements of An−1.

For example, g(312, 4) = g(231, 1) = 3142. The next fact that we will need gives the number of these

permutations.
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Theorem 4.7. The number of permutations in Bn which are an image of exactly two different elements

of An−1, after applying the map g, is given by the sum

n−1∑
j=3

( j − 2)(n − j)(n − j)!. (4.3)

Proof. Let π = g(π1, x) = g(π2, y) for π1, π2 ∈ Cn−1(12) and x, y ∈ [n], where (π1, x) , (π2, y) are

different. We saw in the proof of Theorem 4.6 that x and y must be different. Let us denote the positions

of x and y in π by i and j, respectively. Without loss of generality, let i < j. We know that after removing

y = π j from π, then π j−1π j+k, for some k ≥ 1, is the first occurrence of the classical pattern 12. Note

that some of the two letters, π j−1 and π j+k, may have decreased in value by one. Therefore, we should

have π1 > π2 > · · · > π j−1. Since, if we remove x = πi from π, then πi−1π j must be the first occurrence

of 12, it follows that we must have π1 > π2 > · · · > πi−2 > π j > πi−1 > · · · > π j−1. In other words,

the number π j is between πi−2 and πi−1. Otherwise, we would have a 12−occurrence ending at π j that

starts before position i− 1. We also have that π j−t > π j+l, for any t = 2, · · · , j− 1 and l = 1, · · · , n− j,

because otherwise when removing π j from π, a 12-occurrence starting before π j−1 will be present.

In order to determine π completely, we must known the relations between the n − j + 1 numbers

π j−1, π j+1, π j+2, · · · , πn. The only constraint that we have is that π j−1 is not the largest among them.

Thus, when i and j are fixed, we always have (n− j+1)!−(n− j)! possible ways to write π. Therefore,

the number of different permutations π ∈ S n that are an image for two different tuples is

n−1∑
j=3

j−1∑
i=2

[(n − j + 1)! − (n − j)!] =
n−1∑
j=3

( j − 2)(n − j)(n − j)!.
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Each term in the latter sum gives us the number of permutations in π ∈ Bn, where π = g(π1, x) = g(π2, y)

for some π1, π2 ∈ Cn−1(12) and x, y ∈ [n], where x < y and y is at position j in π. □

As we have seen that no permutation in Bn is counted more than two times, it remains to obtain the

number of permutations in Bn that are not an image of g for any permutation in the set of tuples An−1.

Theorem 4.8. The number of permutations in the set Bn \ g(An−1) is:

n−2∑
k=3

(Fn−k+1 − 1)k(k − 2)(k − 2)!, (4.4)

where Fi denotes the i-th Fibonacci number.

Proof. An example of a permutation in Bn that cannot be obtained as an output of the function g (i.e.,

with Algorithm 1) for any input in An−1 is the permutation 45132. The reason is that before the first

occurrence of the distant pattern 1□2, there exist an occurrence of the classical pattern 12. We want

to obtain a formula for all permutations in Bn having this property. Consider one such permutation

π = π1π2 · · · πn and let the first occurrence of 1□2 be π jπ j+v for some j ≥ 1, v ≥ 2, and j+ v ≤ n. Since,

this is the first such occurrence, observe that πi > π j+d, for any i < j and d ≥ 0. Otherwise we would

have another occurrence of 1□2, preceding π jπ j+v. Thus π ′ = π1 · · · π j−1 must be a permutation of the

j − 1 numbers in [n − j + 2, n] and π ′′ = π j · · · πn is simply a permutation of [1, n − j + 1] for which

π j < π j+v for some v = 1 · · · n − j. This means that π ′ avoids 1□2, but contains the classical pattern 12.

Therefore the number of possibilities for π ′ is av j−1(1□2)−av j−1(12) = F j−1 since av j−1(1□2) = F j

(Theorem 4.3), av j−1(12) = 1 and A j−1(12) ⊂ A j−1(1□2). Now, let us denote k = n− j+ 1, for clarity.

For π ′′, we can see that it could be any k-permutation except that it could not start with k or with (k−1)k
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since if this is the case, then π ′′ will not start with an occurrence of the 1□2 pattern. The latter means

that the possible values for π ′′ are exactly k! − (k − 1)! − (k − 2)! = k(k − 2)(k − 2)!. Summing over

k, we obtain the given formula. □

Now, we are ready to derive the recurrence formula that we want. Note that |An−1| = |Cn−1(12) ×

[n]| = ((n − 1)! − 1) · n = n! − n gives the number of permutations in Bn that are the image of the map

g for exactly one tuple in An−1. Theorems 4.7 and 4.8 give the number of permutations being the image

of g for 2 and 0 tuples in An−1, respectively. We also know that |Bn| = |Cn(1□2)| = n! − Fn+1. Thus

using inclusion-exclusion we have:

n! − Fn+1 = (n! − n) −
n−1∑
j=3

( j − 2)(n − j)(n − j)! +
n−2∑
k=3

(Fn−k+1 − 1)k(k − 2)((k − 2)!).

After simplifying, we obtain the following recurrence formula for the Fibonacci numbers and re-

spectively for the number of permutations avoiding the distant pattern 1□2 (or 2□1):

avn(1□2) = Fn+1 = n +

n−3∑
k=1

(n − (k + 2)Fn−(k+1)) · k · k!. (4.5)

4.3 Classical DPs of size 3

As we can infer from Theorem 4.1, finding a closed formula for the avoidance set of a distant pattern

becomes more complicated as its size increases, because the number of classical patterns that must be

simultaneously avoided increases, as well. In this section, we describe some already established results
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on the DPs of size 3 with one square (xy□z) and two squares (x□y□z). Then, we discuss an approach

that can be used to obtain the generating function for avn(1□3□2).

4.3.1 Patterns of the kind xy□z

Consider the patterns xy□z and x□yz, for some permutation xyz ∈ S 3. The thesis of Firro [70] and

two related works [71, 72] give the formula

avn(12□3) =
∑
k≥0

1

n − k

(
2n − 2k

n − 1− 2k

)(
n − k

k

)
. (4.6)

The same thesis gives two bijections between 12□3-avoiding permutations and odd-dissections of a

given (n + 2)-gon, which are dissections with non-crossing diagonals so that no 2m-gons (m > 1)

appear [118, A049124]. In fact, it turns out that this is the cardinality of the avoidance set for any

pattern of the kind xy□z or x□yz [70]. We know that all classical patterns in S 3 are avoided by the

same number of permutations, namely the Catalan numbers. One might suspect that whenever two

classical patterns p, q ∈ S k are Wilf-equivalent, then inserting a square at the same place in p and q will

produce two Wilf-equivalent distant patterns. The computer simulations suggest that this is true for the

Wilf-equivalent patterns {1234, 1243, 2143}. We have formulated this conjecture in Section 5.3.

It was shown in [70] that if xyz ∈ S 3, then inserting a square between x and y or between y and z

always gives us two Wilf-equivalent patterns. It is worth noting that we do not have a similar fact when

considering patterns of size four. For example, av7(1□234) = 3612 , 3614 = av7(12□34).
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4.3.2 Patterns of the kind x□y□z

The inverse and the complement map give us at most two Wilf-equivalent permutation classes for

these patterns: {dist1(p) | p = 132, 231, 213, 312} and {dist1(p) | p = 123, 312}. Unlike the case of

classical patterns in which these are, in fact, one class [129], here, these classes are different.

Theorem 4.9 (Hopkins and Weiler [85]). For n > 5,

avn(dist1(123)) > avn(dist1(132)). (4.7)

The theorem above is a special case of a result of Hopkins and Weiler [85, Theorem 3]. In that

work they extend the result of Simion and Schmidt that avn(123) = avn(132) from permutations on

a totally ordered set to a similar result for pattern avoidance in permutations on partially ordered sets.

In particular, they show that avP,n(132) ≤ avP,n(123) for any poset P, where AvP,n(q) is the number of

n-permutations on the poset P avoiding the pattern q. Furthermore, they classify the posets for which

equality holds. Here, we state the corollary of their result generalizing Theorem 4.9, as formulated by

the authors.

Theorem 4.10 (Hopkins and Weiler [85]). For r ≥ 0 and n ≥ 1, we have

avn(distr(123)) ≥ avn(distr(132)), (4.8)

with strict inequality if and only if r ≥ 1 and n ≥ 2r + 4.
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Note that in the case n = 2r + 3, av2r+3(distr(123)) = av2r+3(distr(132)) since there is only one

triple of positions where each of these two patterns can occur in a (2r + 3)-permutation, namely the

positions 1, r + 2 and 2r + 3. So for each such occurrence, we can exchange the elements at positions

r+2 and 2r+3 to get an occurrence of the other pattern. A similar statement about consecutive patterns

was first proved in [57] with a simple injection. It states that avn(123) > avn(132) for every n ≥ 4. The

listed facts imply that the monotonic pattern 123 is avoided more frequently than 132 when we have two

gaps of size exactly 0 between the letters in each occurrence of the two patterns, or when the minimal

constraint for each gap is some fixed positive number. However, when patterns with all possible gap

sizes must be avoided, we have an equality since avn(123) = avn(132). We address this surprising fact

in the next section.

Along those lines is another work of Elizalde [56] on consecutive patterns, where he generalizes

[57] by proving that the number of permutations avoiding the monotone consecutive pattern 12 · · ·m is

asymptotically larger than the number of permutations avoiding any other consecutive pattern of size

m. He also proved there that avn(12 . . . (m − 2)m(m − 1)) is asymptotically smaller than the number

of permutations avoiding any other consecutive pattern of the same size. Similar conjectures can be

formulated for DPs (see Section 5.3).
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4.3.2.1 The pattern 1□3□2

In this subsection, we will describe an approach that one can use to find the generating function

G(x) =
∑
n≥0

avn(q)xn, where q = 1□3□2 = dist1(132). The complete proof is rather technical, so we

omit many details. We will need to define the following sets of permutations:

H1 B {π | π ∈ Av(q), |π| ≥ 1 and π has no occurrence of 1□32 ending at the last position of π},

H2 B {π | π ∈ Av(q), |π| ≥ 1 and π has no occurrence of 13□2 beginning at the first position of π}.

Let us also denote the corresponding generating functions with

Hi(x) =
∞∑

k=1
hi(k)xk,

where hi(n) is the number of permutations of size n in Hi. Now, we can describe a useful decomposition

for the permutations in Avn(q) which is similar, but more complicated, to the one given in [70] for the

permutations in Avn(13□2).

Theorem 4.11. For all n ≥ 1, π = αnβ ∈ Avn(q) if and only if:

(i) α > β, α, β ∈ Av(q)

(ii) α ≯ β, but α ′ > β ′, where α = α ′t1 and β = t2β ′ for some t1, t2 ∈ [n−1]. and one of the following

holds:

1. t1 > β ′, t2 < α ′, t1 < t2 and α ′, β ′ ∈ Av(q).

2. t1 > β ′, t2 ≮ α ′, β ′ ∈ Av(q) and σ = α ′t1t2 ∈ H1 with t2 not being the smallest element in

σ and not being the second smallest, after t1.
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3. t1 ≯ β ′, t2 < α ′, α ′ ∈ Av(q) and σ = t1t2β ′ ∈ H2 with t1 not being the biggest element in σ

and not being the second biggest, after t2.

4. t1 ≯ β ′, t2 ≮ α ′, σ1 = α ′t2 ∈ H1 with t2 not being the smallest element in σ1 and β ′ = xβ ′′,

where x > t1 > β ′′ and β ′′ ∈ Av(q).

The proof of this theorem is not included here. The described decomposition gives us the next result

almost directly.

Theorem 4.12.

G(x) = 1+ G(x)(xH1(x) + xH2(x) + x3H1(x)) + G2(x)(x − 2x2 − x3 − x4). (4.9)

In order to obtain G(x), we found a way to express H1(x) as a function of H2(x) and G(x). Then

we express H2(x) as a function of G(x) using the block-decomposition method [115]. Extensive case

analysis and inclusion-exclusion arguments are additionally used. As a result, we obtain a system of

two equations each of which is a polynomial of x, G(x) and H2(x). We eliminate H2(x) to obtain an

equation P(x,G(x)) = 0, where P is a polynomial of G(x) with coefficients that are polynomials of

x. The polynomial P has 14 terms with the term of highest total degree being x8G6. One could use a

generalization of the Lagrange inversion formula discussed in the work of Baderier and Drmota [14] to

get a closed-form expression for the coefficients of G(x).

Recent work by Albert et al. [2] discusses a very general approach automating the discovery of

similar decompositions of various sets of combinatorial objects. They claim that their computer method
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allowed them to find generating functions for the number of permutations avoiding other DPs of size 3

with two squares, namely 1□2□3, 1□232 and 13□22.

4.4 Vincular distant patterns

In this section, we consider a particular kind of vincular distant patterns of size 3. The goal will be

to establish a surprising fact related to the permutations avoiding the classical patterns 123 and 132.

4.4.1 Patterns of the form ab□c and a□bc

There are 12 patterns of this kind, we have three symmetry classes and thus at most three Wilf-

equivalence classes. We will show that these three symmetry classes are different, i.e., we have exactly

three Wilf-equivalence classes.

Class 1 Class 2 Class 3

12□3 1□32 13□2

32□1 21□3 31□2

1□23 23□1 2□31

3□21 3□12 2□13

TABLE V: The Wilf-equivalent classes of ab□c and a□bc patterns.

We will first find a recurrence for the pattern 12□3.
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Theorem 4.13. If an = avn(12□3), then an = n! for 0 ≤ n ≤ 3, and for n ≥ 4 we have

an = an−1 + (n − 1)an−2 +
(n + 1)(n − 2)

2
an−3 +

n−1∑
i=4

((
n

i − 1

)
− 1

)
an−i + (n − 1).

Proof. Let q = 12□3 and let π = π1π2 · · · πn be a permutation of [n] that avoids q. We will consider five

cases for the position of the number n in π. Denote this position with i, so πi = n.

Case 1. i = 1: π = nπ2 · · · πn

In this case, n will not participate in any occurrence of q since it can only be the first letter in such

occurrence. Thus since π avoids q then π2 · · · πn must avoid q. There are an−1 such permutations

π2 · · · πn ∈ S n−1.

Case 2. i = 2: π = π1n · · · πn

Here, n cannot participate in any occurrence of q. Neither can π1, because it could participate

only together with π2 = n. Then π1 can be any of the remaining n− 1 numbers. Regardless of the

choice of π1, one would have an−2 ways to choose the order of the remaining n − 2 letters since

red(π3 · · · πn) must avoid q. This gives (n − 1)an−2 ways to obtain π.

Case 3. i = 3: π = π1π2n · · · πn

The number n cannot be part of a q-occurrence, again. Therefore if n− 1 is in an occurrence of q,

then it must be the last letter (the ’3’). Let j = π−1(n − 1) be the position of n − 1 in π.

Case 3a. j = 1 or j = 2

None of the first three elements of π will be part of any occurrence of q. Thus we have

2(n − 2)an−3 permutations π ∈ Avn(q) with i = 3 and j = 1 or j = 2, since we can choose
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the position, j, of n−1 in 2 ways and the other of the first 2 letters in n−2 ways. The rest of

the permutation must avoid q and there are an−3 possibilities for that. We get a q-avoiding

permutation in all of these cases.

Case 3b. j > 3

Here, since π avoids q, we must have π1 > π2, because otherwise π1π2π j would be a q-

occurrence. We can determine π1 and π2 in
(
n−2
2

)
ways. The number of ways to determine

π4 · · · πn would be again an−3, despite knowing that n− 1 will be one of these letters, simply

because this part of π must avoid q and because once we have π1, π2 and π3 fixed, this part

will correspond to a permutation in Avn−3(q).

Case 4. 3 < i < n. π = π1π2 · · · n · · · πn

Since π avoids q, the numbers π1, π2, . . . πi−2 must be in decreasing order. We have three subcases

for the position j = π−1(n − 1).

Case 4a. j = i − 1: π = π1π2 · · · πi−2(n − 1)n · · · πn

The numbers π1, . . . , πi−2 must be in decreasing order since π ∈ Av(q). Once we have

chosen these i − 2 numbers of π then neither πi−1 = n − 1 nor πi = n could participate

in a q-occurrence and any ordering of the last n − i numbers that avoids q would give us a

different q-avoider π. This gives
(
n−2
i−2

)
an−i permutations for this case.

Case 4b. j < i − 1 (in fact, j = 1): π = (n − 1)π2 · · · nπi+1 · · · πn

This would imply that j = 1 since π1, . . . , πi−2 are in decreasing order. If πi−2 > πi−1, then

we can select π2, . . . , πi−1 in
(
n−2
i−2

)
ways which gives

(
n−2
i−2

)
an−i more q-avoiding permuta-



139

n − 1 = π1

π2

πi−2

n = πi

Figure 16: The order of the elements of π in Case 4b.

tions. Slightly more attention is required for the subcase πi−2 < πi−1. In order to avoid

q, all of πi+1, . . . , πn must be smaller than πi−1, because otherwise πi−2πi−1πk would be a

q-occurrence for some k > i. Now, we should calculate how many different permutations

π satisfy the described conditions. For clarity, one may look at Figure 16, which visualizes

the order of the elements in one such π.

We claim that the number of these permutations is
((

n−2
i−3

)
− 1

)
an−i. Indeed, we can first

choose the last n−i numbers πi+1, πi+2, . . . , πn, and the number πi−1. Those are the unlabeled

elements on Figure 16. We can do that in
(

n−2
n−i+1

)
=

(
n−2
i−3

)
ways. Out of these choices,

only the one where we have selected the smallest numbers, 1, 2, . . . , n − i + 1, would force

πi−2 > πi−1 which we do not want to happen, so we exclude this single choice. For all the

other choices, we simply have that the biggest number among the chosen has to be πi−1 and

the other n − i chosen numbers can be ordered in an−i ways at positions i + 1, i + 2, . . .,

n. The unchosen i − 3 numbers are ordered decreasingly after π1 = n − 1, at positions

2, 3, · · · , i − 2.
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Case 4c. j > i

In this case, the numbers π1, . . . , πi−1 must all be in decreasing order. Thus, it suffices just

to choose which are they and choose the numbers in the remaining part of the permutation,

i.e., we have
(
n−2
i−1

)
an−i permutations here.

Case 5. i = n. π = π1π2π3 · · · n

Again, the numbers π1, . . . , πn−2 must be in decreasing order, so it suffices to choose πn−1 in n−1

ways.

It remains to observe that in Case 4, after summing the number of q-avoiding permutations for the three

subcases, we get

((
n − 2

i − 2

)
+

(
n − 2

i − 2

)
+

((
n − 2

i − 3

)
− 1

)
+

(
n − 2

i − 1

))
an−i =

=

((
n − 2

i − 2

)
+

((
n − 2

i − 3

)
− 1

)
+

(
n − 1

i − 1

))
an−i =

=

((
n − 1

i − 2

)
+

(
n − 1

i − 1

)
− 1

)
an−i =

((
n

i − 1

)
− 1

)
an−i.

□

The first few elements of the sequence avn(12□3) for n ≥ 4 are

20, 75, 316, 1464, 7359, 39815, 230306.

This is not part of any sequence in OEIS.

This enumerates avoidance for Class 1 patterns in Table Table V. Similar recurrence can be found

for the patterns in Class 2. We give it below using the pattern 1□32.
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Theorem 4.14. If bn = avn(1□32), then bn = n! for 0 ≤ n ≤ 3 and for n ≥ 4 we have

bn = bn−1 + (n − 1)bn−2 +
(n + 1)(n − 2)

2
bn−3 +

n−3∑
i=2

(
i
(
n − 2

i

)
+

(
n − 1

i − 1

))
bi−1 + (n − 1). (4.10)

The first few elements of the sequence avn(1□32) for n ≥ 4 are

20, 76, 326, 1544, 7954, 44164, 262456.

This is not part of any sequence in OEIS.

Theorems 4.13 and 4.14 differ only in the sums in their right-hand sides. Applying the complement

map after the reverse map, we see that avn(12□3) = avn(1□23) for every positive n and we already

placed those two patterns in the same of the three classes for the considered set of vincular DPs. Using

this, we can easily prove the following.

Theorem 4.15. If n > 4, then avn(1□23) < avn(1□32).

Proof. We just noted that avn(1□23) is given by the number an from Theorem 4.13, while avn(1□32) is

given by the number bn from Theorem 4.14. By substituting j = n − i + 1, we get that the sum in the

right-hand side of Equation (4.10) can be written as

n−1∑
j=4

((n − j + 1)
(
n − 2

j − 3

)
+

(
n − 1

j − 1

)
)bn− j. (4.11)

Then, in order to obtain this inequality, it suffices to prove that for every n > 4 and 4 ≤ i ≤ n − 1:

(
n

i − 1

)
− 1 < (n − i + 1)

(
n − 2

i − 3

)
+

(
n − 1

i − 1

)
. (4.12)
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This is equivalent to
(
n−1
i−2

)
− 1 < (n − i + 1)

(
n−2
i−3

)
or

(
n−1
i−2

)
− 1 <

(n−i+1)(i−2)
n−1

(
n−1
i−2

)
. When n = 5 and

i = 4, we check directly that the latter holds. When n > 5, one can easily see that (n−i+1)(i−2)
n−1 > 1, for

4 ≤ i ≤ n − 1. □

It remains to investigate Class 3. A well known proof technique in the area of permutation patterns

helps to do that.

Theorem 4.16. For all n ∈ Z+, Avn(13□2) = Avn(13□2), which implies that avn(13□2) = avn(13□2).

Proof. We will prove that whenever an n-permutation contains the pattern 13□2, then it must contain the

pattern 13□2. Take σ = σ1σ2 · · ·σn ∈ S n containing q = 13□2 and let σiσ jσk, 1 ≤ i < j < k − 1 < n

be an occurrence of q with the smallest possible distance between the 1 and the 3, i.e., d = j − i is the

smallest possible for such an occurrence. If d = 1, then σiσ jσk would be an occurrence of 13□2 and

we are done. Assume that d > 1 and then consider the value of σi+1. If σi+1 < σk, then σi+1σ jσk

would be a q-occurrence with j − (i + 1) = d − 1 < d. On the other hand, if σi+1 > σk, then σiσi+1σk

would be a q-occurrence with (i + 1) − i = 1 < d, which is again a contradiction. □

The theorem that we just proved and the fact that avn(12□3) = avn(13□2) (see [70] and subsection

4.3.1) imply that avn(13□2) is given by the right-hand side of Equation (4.6) and sequence A049124

in OEIS. It turns out that the patterns in the corresponding Class 3 of Table Table V have the smallest

avoiding sets out of the 3 classes.

Theorem 4.17. For all n ≥ 5, avn(12□3) > avn(13□2).
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To establish this fact, we will first need a few additional definitions. For a given pattern q, let

Avi1,i2,...,ik ;n(q) be the set of q-avoiders of size n beginning with i1, i2, . . . , ik and let avi1,i2,...,ik ;n(q) denotes

avi1,i2,...,ik ;n(q). Let us first prove the following simple lemma.

Lemma 4.18. If 1 ≤ i ≤ n − 1 and n ≥ 4, then

avi;n(13□2) ≤ avn;n(13□2) = avn−1(13□2).

Moreover, if 1 ≤ i ≤ n − 2, then the inequality is strict, i.e.,

avi;n(13□2) < avn;n(13□2).

Proof. For every π ∈ Avn−1(13□2), we have that nπ ∈ Avn;n(13□2), since n cannot participate in any

occurrences of 13□2, being at first position. Conversely, for every nσ ∈ Avn;n(13□2), one have that

σ ∈ Avn−1(13□2). Thus, avn;n(13□2) = avn−1(13□2). In addition, for every 1 ≤ i ≤ n − 1 and

iσ ∈ Avi;n(13□2), we have red(σ) ∈ Avn−1(13□2), which implies that avi;n(13□2) ≤ avn−1(13□2).

Since n ≥ 4, when 1 ≤ i ≤ n − 2, then we have at least one n-permutation π = inσ ′, beginning with

i, where nσ ′ = σ is such that red(σ) ∈ Avn−1(13□2) and i is obviously part of an 13□2-occurrence. An

example is π = ina · · · (n−1) for any a ∈ [n], where a , i, n, (n−1). Therefore, red(σ) ∈ Avn−1(13□2),

but π = iσ < Avi,n(13□2). □

We will need this lemma together with a few other definitions. Recall that Cn(σ) denotes the per-

mutations in S n containing σ. Then, let
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Un B Cn(12□3) ∩ Avn(13□2)

and

Vn B Avn(12□3) ∩Cn(13□2),

with un B |Un| and vn B |Vn|. In addition, let us denote with Ui1,i2,...,ik ;n (resp. Vi1,i2,...,ik ;n) the set of

permutations in Un (resp. in Vn) beginning with i1i2 . . . ik. Furthermore, let ui1,i2,...,ik ;n B |Ui1,i2,...,ik ;n| and

vi1,i2,...,ik ;n B |Vi1,i2,...,ik ;n|. Now, we will prove the following.

Lemma 4.19. For each n ≥ 4 and 1 ≤ i ≤ n,

ui;n ≤ vi;n.

Proof. Note that the statement implies un ≤ vn and |Cn(12□3)| ≤ |Cn(13□2)| (resp.,

avn(12□3)≥avn(13□2)), for each n ≥ 4. Indeed, if Tn = Cn(12□3) ∩ Cn(13□2), then Cn(12□3) =

Un ∪ Tn and Cn(13□2) = Vn ∪ Tn. Thus, un ≤ vn implies |Cn(12□3)| ≤ |Cn(13□2)|. We will proceed by

induction on n. One can directly check that ui;4 ≤ vi;4 for each 1 ≤ i ≤ 4. Now assume that ui;n ′ ≤ vi;n ′ ,

for each 4 ≤ n ′ ≤ n − 1 and 1 ≤ i ≤ n ′, for a given n ≥ 5. Consider ui;n and vi;n for 1 ≤ i ≤ n. If

i = n, then using the induction hypothesis, we have un;n = un−1 ≤ vn−1 = vn;n. Similarly, if i = n − 1,

then we have un−1;n = un−1 ≤ vn−1 = vn−1;n. Now, let 1 ≤ i ≤ n − 2. By the induction hypothesis,

ui,i−k;n = ui−k;n−1 ≤ vi−k;n−1 = vi,i−k;n, for each 1 ≤ k ≤ i− 1. It remains to compare the numbers ui,i+k;n

and vi,i+k;n for 1 ≤ k ≤ n − i. Note that when k ≥ 3, then ui,i+k;n = 0, since for these values of k, any

n-permutation beginning with i(i + k) will contain an occurrence of 13□2. Similarly, vi,i+k;n = 0, when

i + k < n − 1, since for these values of k, any n-permutation beginning with i(i + k) will contain an
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occurrence of 12□3. We will show that ui,i+1;n ≤ vi,n;n and that ui,i+2;n ≤ vi,n−1;n which will complete the

proof.

Consider the sets Ui,i+1;n and Vi,n;n. First, let us look at those π ∈ Ui,i+1;n (resp., π ∈ Vi,n;n) which do

not begin with an 12□3 occurrence (resp., not with an 13□2 occurrence). Then, note that π must begin

with (n − 2)(n − 1)n (resp., with (n − 2)n(n − 1)). However, we have

un−2,n−1,n;n = un−3 ≤ vn−3 = vn−2,n;n−1 (4.13)

using the induction hypothesis, again.

Now, let us look at those π ∈ Ui,i+1;n beginning with a 12□3 occurrence. Their number is given by

avi;n−1(13□2) − avn−2,n−1;n−1(13□2). (4.14)

Indeed, after we remove from π its first element i and flatten, we obtain an (n − 1)-avoider of 13□2.

Conversely, for any permutation π = iπ2 . . . πn−1 ∈ Avi;n−1(13□2), one can increase by 1 all the elements

of π greater than or equal to i and then add i at the beginning, to obtain a permutation in Ui,i+1;n. This

permutation will begin with a 12□3 occurrence, unless it begins with (n−2)(n−1)n, i.e., when i = n−2

and when π ∈ Avn−2,n−1;n−1(13□2). Therefore, we should subtract avn−2,n−1;n−1(13□2). Respectively,

for the number of permutations π ∈ Vi,n;n, beginning with an 13□2 occurrence, one would have

avn−1;n−1(12□3) − avn−1,n−2;n−1(12□3). (4.15)
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It is not difficult to see that avn−2,n−1;n−1(13□2) = avn−3(13□2) and that avn−1,n−2;n−1(12□3) =

avn−3(12□3). Hence, by using expressions (4.14), (4.15) and (4.13), we see that in order to establish

that ui,i+1;n ≤ vi,n;n, it remains to prove the inequality below for each 1 ≤ i ≤ n − 2:

avi;n−1(13□2) − avn−3(13□2) ≤ avn−1;n−1(12□3) − avn−3(12□3). (4.16)

By Lemma 4.18, we have that avi;n−1(13□2) ≤ avn−1;n−1(13□2) = avn−2(13□2). We also have that

avn−1;n−1(12□3) = avn−2(12□3). Thus, it suffices to prove that

avn−2(13□2) − avn−3(13□2) ≤ avn−2(12□3) − avn−3(12□3). (4.17)

Using that avn−3(q) = avn−2;n−2(q) for any of the patterns q = 12□3 or q = 13□2, as well as the

relation

avi;n−2(13□2) ≤ avi;n−2(12□3) ⇐⇒ vi;n−2 ≥ ui;n−2, (4.18)

we see that Inequality (4.17) is equivalent to

n−3∑
i=1

vi;n−2 ≥

n−3∑
i=1

ui;n−2, (4.19)

which follows directly, because by the induction hypothesis ui;n−2 ≤ vi;n−2, ∀1 ≤ i ≤ n− 3. From (4.13)

and (4.19), we conclude that ui,i+1;n ≤ vi,n;n.

One could establish that ui,i+2;n ≤ vi,n−1;n in almost the same way, by first noticing that Ui,i+2;n =

Ui,i+2,i+1;n and that Vi,n−1;n = Vi,n−1,n;n since the permutations in Ui,i+2;n (resp., in Vi,n−1;n) do not have
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a 13□2 (resp., a 12□3) occurrence. Then, the only thing that remains is to consider the cases i = n − 2

and i , n − 2 and to use the induction hypothesis and Lemma 4.18. In particular, if i = n − 2, then

un−2,n,n−1;n = un−3 ≤ vn−3 = vn−2,n−1,n;n. (4.20)

If i , n − 2, then π ∈ Ui,i+2,i+1;n (resp., in Vi,n−1,n;n) begins with an 12□3 (resp., an 13□2) occurrence

and

ui,i+2,i+1;n = avi;n−2(13□2) ≤ avn−2;n−2(13□2) (4.21)

by Lemma 4.18. In addition,

avn−2;n−2(13□2) ≤ avn−2;n−2(12□3) = vi,n−1,n;n (4.22)

by the induction hypothesis. □

As we have pointed out, Lemma 4.19 implies that avn(12□3) ≥ avn(13□2), for each n ≥ 4. In

order to obtain a proof of Theorem 4.17, we should just use the second part of Lemma 4.18 to see that

Inequality (4.16) is strict when n − 1 ≥ 4, i.e., when n ≥ 5.

The last Theorem 4.17 together with Theorem 4.15, the result on consecutive patterns of Elizalde

[57] and the corollary of the result of Hopkins (Theorem 4.9) imply the following.

Corollary 4.20. Consider the set of distant patterns

X = {1□23, 12□3, 1□2□3, 123}.
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Take any pattern p ∈ X and switch the places of the letters 2 and 3 to get a pattern p ′ in Y =

{1□32, 13□2, 1□3□2, 132}. We have that Avn(p) > Avn(p ′) for all n > 5, p ∈ X and the corresponding

p ′ ∈ Y , except for 1□23 which is avoided by fewer permutations of size n, compared to its counterpart

1□32.

Cn(123) Cn(1□23)

Cn(12□3) Cn(1□2□3)

Cn(132) Cn(1□32)

Cn(13□2) Cn(1□3□2)

Figure 17: Venn diagrams for the n-permutations containing 123 and 132.

Figure 17 depicts the sets of permutations containing each of the patterns in X and Y as a Venn

diagram. Corollary 4.20 is somewhat surprising since each occurrence of the classical pattern 123 (resp.,

132) is an occurrence of a pattern in X (resp., Y) and as it was shown in [129], avn(123) = avn(132).

Thus the total “area” of the union of the four sets on the left is the same as the total “area” of the union of

the four sets on the right. However, each of the three unmarked sets on the left contains fewer elements

than its counterpart on the right.
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4.4.2 Consecutive distant patterns

Recall that when all the constraints for the gap sizes in a distant pattern are tight, then we call these

patterns consecutive distant patterns and we underline the whole pattern to denote that. Considering

POGP, Kitaev mentioned in the introduction of [100] that Avn(1□2) =
(

n
⌊ n
2 ⌋

)
. Indeed, we may use that the

letters in the odd and the even positions of a permutation avoiding this pattern do not affect each other.

Thus we can choose the letters in odd positions in
(

n
⌊ n
2 ⌋

)
ways, and we must arrange them in decreasing

order. We then must arrange the letters in even positions in decreasing order, too. Using the same

reasoning one can easily find, for example Avn(1□
22) or Avn(1□2□3). This can be further generalized

by the fact given below. Recall that if q = q1q2 · · · qk is a classical pattern of size k, then q = q1q2 · · · qk

is the corresponding consecutive pattern. We also use distr(q) to denote the corresponding consecutive

distant pattern q1□rq2□r · · ·□rqk.

Theorem 4.21. [99, Theorem 11] For a given classical pattern q of size k, given distance r ≥ 0 and a

natural n, denote l = ⌊ n
r+1⌋. Set u B n mod (r + 1) ∈ [0, r]. Then

avn(distr(q)) =
n!

(l!)r+1−u((l + 1)!)u |Al(q)|r+1−u|Al+1(q)|u. (4.23)

This gives us a formula for the size of the set of permutations avoiding any consecutive distant pat-

tern, knowing the size of the avoidance set for the corresponding classical consecutive pattern. Corollar-

ies of this simple fact were previously stated in [70, 71]. We state another simple corollary here, which

shows a surprising relationship between the last Theorem 4.21 and avoidance of arithmetic progressions

in permutations.
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Theorem 4.22. The number of permutations of size n avoiding arithmetic progressions of length k > 1

and difference r > 0 is avn(distr(12 · · · k)), which can be obtained using Equation (4.23).

Proof. Consider π ∈ S n, containing an arithmetic progression πi1πi2 · · · πik of size k and difference r > 0.

I.e., we have πi1 = x, πi2 = x+ r,· · · , πik = x+(k− 1)r for some x, r ∈ [n] with i1 < i2 < · · · < ik. Then

in the inverse permutation π−1, i1i2 · · · ik will be an occurrence of the distant pattern distr(12 · · · k) since

π−1(x) = i1, π−1(x+ r) = i2, · · · , π−1(x+(k− 1)r) = ik. Conversely, if π ∈ S n contains distr(12 · · · k),

then π−1 contains an arithmetic progression of length k and difference r > 0. Therefore, the number

of permutations of [n] containing arithmetic progressions of length k and difference r > 0 equals the

number of permutations of [n] containing distr(12 · · · k). This implies the same for the set of avoiders,

i.e., what we aim to prove. □

4.5 Interpretations of other results with DPs

Here, we will demonstrate that DPs can be very useful when interpreting already known results

(including ones obtained with a computer). One previous work that gives several conjectures about the

enumeration of pattern-avoiding classes containing many size four patterns is the work of Kuszmaul

[105]. He listed ten conjectures about simultaneous pattern avoidance of many size four patterns. One

can find brief solutions, using both computer programs and manual work, to many of these conjectures

in the two articles of Mansour and Schork [112, 113].

Below, we give direct solutions to two of the conjectures without using a computer. To do that, we

interpret the respective big set of size four patterns as a smaller set of both classical and distant patterns.

Our approach is similar to the technique introduced in [114].
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Theorem 4.23. (conjectured in [105, p.20, sequence 6]) The generating function of

avn(2431, 2143, 3142, 4132, 1432, 1342, 1324, 1423, 1243)

is given by C + x3C, where C is the generating function for the Catalan numbers.

Proof. Note that the set of patterns above can be written as

Π = {□132, 132□, 1342}

When n = 1, 2, 3, avn(Π) = 1, 2, 6 respectively and these are indeed the first three coefficients of

C + x3C. Consider values n ≥ 4. If σ ∈ Avn(132), then σ ∈ Avn(Π). As we know, avn(132) has

generating function C [104]. It remains to find the generating function for those σ containing 132, but

avoiding Π . Take one such σ = σ1σ2 · · ·σn and notice that any occurrence of 132 in σ must have σ1

as its first letter and σn as its last letter. Otherwise, given that n ≥ 4, an occurrence of at least one of the

patterns 132□ or □132 will be present. Now, let σk = n be the biggest element of σ. Clearly, σ1σkσn

must be an occurrence of 132. If not, then this biggest element must be either at the first or the last

position in σ and thus σ would not contain any 132-occurrences that either begin at σ1 or end at σn.

In Figure 18 are shown three black points representing σ1, σk and σn, as well as three segments of the

diagram of σ denoted with A, B and C and defined below. We further show that σ will not contain any

elements in these three segments. Here is why:
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• A is empty

There is no element x among σ2, σ3, · · · , σk−1, such that x < σn. If there is such x, then xσkσn

would be a forbidden occurrence of 132.

• B is empty

There is no element x among σk+1, σk+2, · · · , σn−1, such that σ1 < x < σk. If there is such x,

then σ1σkx would be a forbidden occurrence of 132.

• C is empty

There is no element x among σ1, σ2, · · · , σk−1, such that σn < x < σk. If there is such x, then

σ1xσkσn would be an occurrence of 1342.

Therefore, the biggest element σk in σmust be at position 2, i.e., k = 2 and the only non-empty segment

could be the one denoted by α in figure Figure 18. In other words, we must have σ = (n− 2)nα(n− 1),

for some permutation α ∈ Av(132). Otherwise, an occurrence of 132, such that σ1 = n − 2 is not part

of it, would be formed. Conversely, for any α ∈ Av(132), σ = (n − 2)nα(n − 1) belongs to Av(Π).

Then, we get x3C for the generating function of the permutations in Av(Π) containing 132 and

therefore we will have C + x3C for the generating function of Av(Π), since C is the generating function

for Av(132). □

As we know, C = 1+ xC2, so we can write

C + x3C = C + x3(1+ xC2) = x3 + C(1+ x4C)
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σ1

σk

σnA

C B

α

Figure 18: Decomposition for σ ∈ Av(Π) from the proof of Theorem 4.23.

and this indeed corresponds to sequence [118, A071742] given by C(1+ x4C), as reported in [105], with

the subtle difference that for n = 3, we have one extra permutation in Av3(Π), namely 132. The same

structure for the decomposition of the permutations in Av(Π) was also found recently with a computer

by Bean et al., who used a particular algorithm called the Struct algorithm [17]. As we saw, rewriting

the problem in terms of DPs helped us to prove the result directly and to give an interpretation of the

already discovered decomposition.

Below, we will give a direct proof to another former conjecture listed in [105].

Theorem 4.24. (conjectured in [105, p.19, sequence 5]) The generating function of

avn(2431, 2413, 3142, 4132, 1432, 1342, 1324, 1423)

is given by C(1+ x3C), where C is the generating function for the Catalan numbers.
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Proof. Note that the set of permutations above can be written as

Π = {13□2, 1324, 2431, 3142, 4132}.

If σ has no occurrences of 132 at all, then obviously σ ∈ Av(Π) and the generating function for these

permutations is C. Let us consider those σ that have some occurrences of 132 and are in Av(Π). The

set Π contains 13□2 thus all the occurrences of 132 in σ, are occurrences of 132. Take the occurrence

σiσ jσ j+1 of 132 that ends at the largest possible position, i.e., with j maximal. Denote by α the

segment in σ of largest possible size that ends at σi and such that α < σ j+1 < σ j. Let us first consider

σ ′ = σ j+2σ j+3 · · ·σn. We will show that σ ′ is the empty permutation, i.e., n = j + 1 and the segments

A,B and C, defined below and shown at Figure 19 are empty.

• A is empty

There is no element x in σ ′, such that x < σ j and x ≮ α. If there is such x, then σiσ jx would be

an occurrence of 132 that is not an 132−occurrence.

• B is empty

There is no element x in σ ′, such that x < α. If there is such x, then σiσ jσ j+1x would be an

occurrence of 2431 which is not allowed.

• C is empty

There is no element x in σ ′, such that x > σ j. If there is such x, then σiσ jσ j+1x would be an

occurrence of 1324 which is not allowed.
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σ j

σ j+1

C

A

B

α σi

E

F D

Figure 19: Decomposition for σ ∈ Av(Π) from the proof of Theorem 4.24.

Next, let us consider the segment σ ′′ = σi+1 · · ·σ j−1. We will show that σ ′′ is the empty permutation,

i.e., the segment D, shown at Figure 19, is empty and i = j − 1.

• D is empty

There is no element x in σ ′′, such that x > σ j+1. If there is such x, then σixσ j+1 would be an

occurrence of 132 that is not an 132−occurrence.

Finally, consider the segment σ ′′′ that is the part of σ in front of α. We will show that σ ′′′ is the

empty permutation, i.e., the segments E and F, shown at Figure 19 are empty.

• E is empty

There is no element x in σ ′′′, such that x > σ j+1 and x < σ j. If there is such x, then xσiσ jσ j+1

would be an occurrence of 3142, which is forbidden.
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• F is empty

There is no element x in σ ′′′, such that x > σ j. If there is such x, then xσiσ jσ j+1 would be an

occurrence of 4132, which is forbidden.

Therefore, we must have σ = αn(n−1), where α is non-empty and α ∈ Av(132). The latter holds since

if α contains 132 then after appending σ j at the end, we will get an occurrence of 1324. Conversely,

one may readily check that for each non-empty α ∈ Av(132), σ = αn(n− 1) would be a permutation in

Av(Π). Thus, the generating function of the number of permutations in Av(Π) is C + x2(C − 1), since

the generating function of such non-empty α ∈ Av(132) is C − 1. Furthermore, we have

C + x2(C − 1) = C + x2xC2 = C(1+ x3C).

□

The sequence of the coefficients for this generating function is given by A071726 in OEIS.

4.6 Stanley–Wilf type conjectures for DPs

In this section, we will consider some analogues of the Stanley-Wilf conjecture for DPs. The re-

quired definitions and the historical background on the Stanely-Wilf conjecture for classical patterns

can be found in Section 1.1.3.

In Theorem 4.1, we saw that the avoidance of every distant pattern is equivalent to simultaneous

avoidance of several classical patterns. The Stanley–Wilf conjecture is true for any of these classical

patterns. Thus we will have that n
√

avn(q) < const, for any distant pattern q, when n → ∞. Arratia’s

observation that avm+n(q) ≥ avm(q).avn(q), also holds for distant patterns, if the considered distant
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pattern does not start with a square. Thus for those kind of DPs, we can rely on the Fekete’s lemma on

subadditive sequences, exactly as Arratia did, to obtain that n
√

avn(dp) exists. As for the DPs beginning

with r > 0 number of squares, we can use Theorem 4.2 to write

n
√

avn(□rq) = n
√

n(r)avn−r(q) = (n(r))
1
n avn−r(q)

1
n−r

n−r
n −→

n→∞ cq,

where q is a distant pattern which does not start with a square and n
√

avn(q) −→ cq. This yields the

following Stanley–Wilf type result for DPs.

Theorem 4.25. For any distant pattern q, there exists a constant c > 0, such that

n
√

avn(q) −→
n→∞ cq. (4.24)

An interesting continuation might be to consider avoidance of distr(q), for a classical pattern q and

size of r that increases with n. Obviously, if r ≥ n − 1, then avn(distr(q)) = n! for any pattern q.

However, one may ask what will happen if r is a fixed positive fraction of n. Is it true that when n is

growing, the number of permutations avoiding the corresponding series of DPs is still always converging

to cn, for some constant c? Below, we show that this is not the case, by using Theorem 4.4.

Theorem 4.26. It is not true that for any given classical pattern q, there exist constants c > 0 and

0 < c1 < 1, such that

n
√

avn(distr(q))
n→∞
−→

r=⌊c1n⌋
c (4.25)
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Proof. Consider the classical pattern q = 12. By Theorem 4.4, the number of n-permutations avoiding

1□r2, for any r ≥ 1, will be the same as the number of n-permutations for which in each of their cycles,

any two elements differ by at most r. Denote this set of permutations by S r
n. Furthermore, let Cr

n be the

set of permutations in S n for which each cycle is of length exactly r, except possibly 1 cycle of smaller

length, if r does not divide n, and where each cycle is consisted of consecutive elements. Therefore,

since Cr
n ⊆ S r

n, we can use that |Cr
n| ≤ |S r

n| = avn(1□
r2). In addition, we have the obvious bound

|Cr
n| ≥ ((r − 1)!)⌊

n
r ⌋. Thus for any given 0 < c1 < 1, if r = ⌊c1n⌋, then for big enough values of n, we

have:

Avn(1□
r2) ≥ ((r − 1)!)⌊

n
r ⌋ = ((⌊c1n⌋− 1)!)

⌊ n
⌊c1n⌋ ⌋ = ((⌊c1n⌋− 1)!)

1
c1 ≥

((
c1
2

n)!)
1

c1 ≥ ((
c1n
2e

)
c1
2 n)

1
c1 = (

c1n
2e

)
n
2 =
√

Cnn = Ω(Cn),

for some constant C > 0. In the last equation, we used the Stirling approximation. □

The latter fact motivates us to consider the following conjecture.

Conjecture 4.27. For any given classical pattern q and for every 0 < c1 < 1, there exists 0 < w < 1,

such that:

lim
n→∞

(
avn(dist⌊c1n⌋(q))

n!

) 1
n

= w (4.26)

The approach of Elizalde ([55, Section 4]) for consecutive patterns might be useful when one tries

to prove the latter conjecture, even though this approach cannot be applied directly. Here, we prove one

lemma that might help confirming the conjecture.
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Lemma 4.28. For any given classical pattern q ∈ S k and for every 0 < c1 < 1, there exists d < 1, such

that if r = ⌊c1n⌋ and n ≥ k(r + 1), then

avn(distr(q)) < dnn!. (4.27)

Proof. Assume that n ≥ k(r + 1) for some c1 and n and let us take an arbitrary permutation π =

π1π2 · · · πn. We can divide the elements of π into roughly n
k non-overlapping subsequences of size k,

such that if π ∈ Avn(distr(q)), then neither of these subsequences is order-isomorphic to q. We are

looking for an upper bound and thus such a necessary condition could help. One way to get such a

partition into subsequences is to take

{π1πr+2 · · · π(k−1)r+k, π2πr+3π2r+4 · · · , πr+1π2r+2 · · · },

with the first element in every next subsequence being the first not yet used element of π. Denote

this family of subsequences by F and the event that after a uniform sampling of a permutation π, no

subsequence in F is order isomorphic to q by EF,q. Since |F| ≥ (r + 1) > 0, we will have that

P(EF,q) ≤
(
1−
1

k!

)r+1

Therefore, if we write Cπ,distr(q) for the event that π contains the pattern distr(q), then

P(Cπ,distr(q)) > 1−
(
1−
1

k!

)r+1
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and thus the number of permutations π containing distr(q) is at least n!(1−
(
1− 1

k!

)r+1
) from which we

can deduce that avn(distr(q)) ≤ n!
((
1− 1

k!

)r+1
)
=

((
1− 1

k!

) r+1
n

)n
n! = dnn!, for d =

(
1− 1

k!

) r+1
n . □

An analogous fact could be conjectured about the bound from below, which would lead to a proof

of Conjecture 4.27, since we have Lemma 4.28.

Conjecture 4.29. For any given classical pattern q ∈ S k and for every 0 < c1 < 1, there exists c > 0,

such that if r = ⌊c1n⌋ and n ≥ k(r + 1), then

avn(distr(q)) > cnn!. (4.28)

We saw that when r is a positive fraction of n, the number of n-permutations avoiding the corre-

sponding distant pattern may become huge. Thus it would be reasonable to consider a Stanley–Wilf type

conjecture, where r is asymptotically smaller than O(n), e.g., a function of the kind nc2 , for 0 < c2 < 1.

Conjecture 4.30. For any given classical pattern q, there exist cq > 0 and 0 < c2 < 1, such that

n
√

avn(distr(q))
n→∞
−→

r=⌊nc2 ⌋
cq (4.29)

If the latter conjecture is true, then one might ask which are the allowable growth rates cq when c2

is a fixed positive constant. Furthermore, an interesting additional question would be to find a function

g(n), such that

n
√

avn(distr(q))
n→∞
−→

r=⌊Θ(g(n))⌋
c,
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for some constant c > 0, but

n
√

avn(distr(q))
n→∞
−̸→

r=⌊Ω(g(n))⌋
c,

for any c > 0.



CHAPTER 5

FURTHER QUESTIONS

5.1 Sorting and shuffling

The sorting devices considered in Chapter 2 and the obtained results raise some additional questions.

1. Can we use Theorem 2.6 to make progress on the long-standing problem of finding the number

of permutations sortable by a deque [118, A182216]? Some results on the asymptotic of these

numbers can be found in [124, 125].

2. Can we find shuffle queues that are equivalent to the input and the output restricted deques defined

in Section 1.3.3? In general, if T is a set of patterns, then for which T exists a shuffle queue QΣ ,

such that S n(QΣ) = Avn(T ), for each n ≥ 2?

3. Find characterizations in terms of pattern avoiding classes for the set of permutations of given

cost. Theorem 2.9 gives such a characterization for the set of permutations of cost 1.

4. Is it true that

M(n) −−−→
n→∞ ⌈log2 n⌉?,

where M(n) is the maximal cost of a permutation of size n, defined after Theorem 2.14. A

positive answer to this question would imply that every permutation of size n can be sorted using

O(n log n) operations by using cuts since one iteration uses O(n) operations.
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5. In Section 2.1.2, we noted that there exists a deterministic linear time algorithm that sorts all of

the permutations in S n(Q
′
cuts). Which are the shuffling methods Σ for which there exists such a

linear procedure that sorts all of the permutations in S n(Q
′
Σ)?

6. Find characterization of the shuffling methods, whose shuffle queues without restrictions or of

types (i) and (ii), can sort all permutations in S n? Theorem 2.20 identifies one class of such

shuffling methods for shuffle queues of type (ii).

5.2 Moments of permutation statistics

Here, we discuss four interesting further questions related to the results in Chapter 3.

1. Can we improve the bounds for the number of terms in Equation (3.2) and for the number of terms

in Equation (3.7)? Some computational evidence suggests that this might be possible.

2. Can we prove the central limit theorem for vincular patterns by giving either a combinatorial or

algebraic proof to Equation (3.13) in Theorem 3.26?

3. Which are the possible asymptotic distributions of cntP for other bivincular patterns, except

(21, {1}, {1}), which was shown to be Poisson in Section 3.4.3? This question has been already

stated in [84, Section 1], where some approaches were also suggested.

4. Theorem 3.10 shows that the aggregate of any permutation statistic is a linear combination of

shifted factorials with constant coefficients. Similarly, in [96], Khare et al. showed that any statis-

tic on matchings is a linear combination of double factorials with constant coefficients, whereas

for statistics on the more general structure of set partitions, Chern et al. [37] showed that we have

linear combinations of shifted Bell numbers with polynomial coefficients. These facts suggest that
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most probably, there exists a combinatorial structure generalizing permutations, for which the ag-

gregates of the statistics on it can be written as linear combinations of factorials with polynomial

coefficients. Can we find such a structure, e.g., posets or polyominoes?

5.3 Distant patterns

Some ideas for further investigations, related to distant patterns and chapter 4 are listed below.

1. The following surprising conjecture was formulated with the help of a computer.

Conjecture 5.1. Choose one of the 3 places between consecutive letters in the patterns

{1234, 1243, 2143} and put a square at that place for each of the three given classical patterns. You

will obtain three Wilf-equivalent distant patterns. For example,

avn(1□234) = avn(1□243) = avn(2□143). (5.1)

To the best of our knowledge, none of the parts of this conjecture has been already resolved or

follows from previous results. We should note that a similar statement does not hold for any

two Wilf-equivalent classical patterns, because avn(4132) = avn(3142) [131], for all n > 1, but

|A7(4□132)| = 3592 , 3587 = |A7(3□142)|.

2. Uniform distant patterns are discussed in Section 4.3. Below, we list three conjectures related to

the least and most avoided uniform distant pattern:



165

Conjecture 5.2. For every m ≥ 3 and r ≥ 1, there exists n0 ∈ N such that for every natural n > n0,

we have

avn(distr(12 · · ·m)) ≥ avn(distr(q)), (5.2)

for any given classical pattern q of size m.

Conjecture 5.3. For every m ≥ 3 and r ≥ 1, there exists n0 ∈ N such that for every natural n > n0,

we have

avn(distr(12 · · · (m − 2)m(m − 1))) ≤ avn(distr(q)), (5.3)

for any given classical pattern q of size m.

A weaker version of these two conjectures would be the one below and a suitable injection estab-

lishing the fact is desired.

Conjecture 5.4. For every m ≥ 3 and r ≥ 1, there exists n0 ∈ N such that for every natural n > n0:

avn(distr(12 · · ·m)) ≥ avn(distr(12 · · · (m − 2)m(m − 1))). (5.4)

3. Three conjectures related to Stanley–Wilf type results for distant patterns, namely Conjecture

4.27, 4.29 and 4.30, are listed in Section 4.6.

4. In addition to distant pattern, one may consider bivincular distant patterns, i.e., vincular distant

patterns with constraints for the values of the letters in each of their occurrences.
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