Gradualizing the Calculus of Inductive Constructions [article]

Meven Lennon-Bertrand, Kenji Maillard, Nicolas Tabareau, Éric Tanter
2021 arXiv   pre-print
Acknowledging the ordeal of a fully formal development in a proof assistant such as Coq, we investigate gradual variations on the Calculus of Inductive Construction (CIC) for swifter prototyping with imprecise types and terms. We observe, with a no-go theorem, a crucial tradeoff between graduality and the key properties of normalization and closure of universes under dependent product that CIC enjoys. Beyond this Fire Triangle of Graduality, we explore the gradualization of CIC with three
more » ... ent compromises, each relaxing one edge of the Fire Triangle. We develop a parametrized presentation of gradual CIC (GCIC) that encompasses all three variations, and develop their metatheory. We first present a bidirectional elaboration of GCIC to a dependently-typed cast calculus, CastCIC, which elucidates the interrelation between typing, conversion, and the gradual guarantees. We use a syntactic model of CastCIC to inform the design of a safe, confluent reduction, and establish, when applicable, normalization. We study the static and dynamic gradual guarantees as well as the stronger notion of graduality with embedding-projection pairs formulated by New and Ahmed, using appropriate semantic model constructions. This work informs and paves the way towards the development of malleable proof assistants and dependently-typed programming languages.
arXiv:2011.10618v3 fatcat:u2pca6lkdzfwtd7i5k3gh4mela