Implicitly Parallel Programming Models for Thousand-Core Microprocessors

Wen-mei Hwu, Shane Ryoo, Sain-Zee Ueng, John H. Kelm, Isaac Gelado, Sam S. Stone, Robert E. Kidd, Sara S. Baghsorkhi, Aqeel A. Mahesri, Stephanie C. Tsao, Nacho Navarro, Steve S. Lumetta (+2 others)
2007 Proceedings - Design Automation Conference  
This paper argues for an implicitly parallel programming model for many-core microprocessors, and provides initial technical approaches towards this goal. In an implicitly parallel programming model, programmers maximize algorithmlevel parallelism, express their parallel algorithms by asserting high-level properties on top of a traditional sequential programming language, and rely on parallelizing compilers and hardware support to perform parallel execution under the hood. In such a model,
more » ... lers and related tools require much more advanced program analysis capabilities and programmer assertions than what are currently available so that a comprehensive understanding of the input program's concurrency can be derived. Such an understanding is then used to drive automatic or interactive parallel code generation tools for a diverse set of parallel hardware organizations. The chip-level architecture and hardware should maintain parallel execution state in such a way that a strictly sequential execution state can always be derived for the purpose of verifying and debugging the program. We argue that implicitly parallel programming models are critical for addressing the software development crises and software scalability challenges for many-core microprocessors.
doi:10.1109/dac.2007.375265 fatcat:d5hcwlhkvbewdhzu2jk2sabbzi