Controlled Recurrence of a Biped with Torso [article]

Adrien Le Coënt, Laurent Fribourg
<span title="2019-03-26">2019</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
We have recently used a symbolic reachability method for controlling the stability of special hybrid systems called 'sampled switched systems'. We show here how the method can be extended in order to control the stability of more general hybrid systems with guard conditions and state resets. We illustrate the method through the example of a biped robot with 6 state variables, using a proportional-derivative (PD) controller. More specifically, we isolate a state region R such that, starting from
more &raquo; ... a state located in R just after a footstep, the PD-control makes the robot state return to R at the end of the following footstep.
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1903.10746v1">arXiv:1903.10746v1</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/wrvas2grrnenrkyaggrxudfrcu">fatcat:wrvas2grrnenrkyaggrxudfrcu</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200905033715/https://arxiv.org/pdf/1903.10746v1.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/05/94/059462b3bc86f1d3d196ff097c247ee2cc5af16b.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1903.10746v1" title="arxiv.org access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> arxiv.org </button> </a>