Stellar Populations and Kinematics of Red Galaxies atz> 2: Implications for the Formation of Massive Galaxies

Pieter G. van Dokkum, Marijn Franx, Natascha M. Forster Schreiber, Garth D. Illingworth, Emanuele Daddi, Kirsten Kraiberg Knudsen, Ivo Labbe, Alan Moorwood, Hans‐Walter Rix, Huub Rottgering, Gregory Rudnick, Ignacio Trujillo (+4 others)
2004 Astrophysical Journal  
We recently identified a substantial population of galaxies at z>2 with red rest-frame optical colors. These distant red galaxies (DRGs) are efficiently selected by the simple observed color criterion J-K>2.3. In this paper we present NIR spectroscopy with Keck/NIRSPEC of six DRGs at 2.4<z<3.2. We detect continuum emission and emission lines of all observed galaxies. Equivalent widths of H alpha are 20-30 Ang, smaller than measured for LBGs and nearby LIRGs, and comparable to normal nearby
more » ... ies. The modest equivalent widths imply that the galaxies either have a decreasing star formation rate, or that they are very dusty. Fitting both the photometry and the H alpha lines, we find continuum extinction A_V=1-2 mag, ages 1-2.5 Gyr, star formation rates 200-400 solar masses/yr, and stellar masses 1-5x10^11 solar masses for models with constant star formation rates. From [NII]/H alpha ratios we infer that the metallicities are high, 1-1.5 x Solar. For four galaxies we can determine line widths from the optical emission lines. The widths are high, ranging from 130-240 km/s, and by combining data for LBGs and DRGs we find significant correlations between linewidth and restframe U-V color, and between linewidth and stellar mass. The latter correlation has a similar slope and offset as the "baryonic Tully-Fisher relation" for nearby galaxies. The median dynamical mass is ~2x10^11 solar masses, supporting the high stellar masses inferred from the photometry. We find that the median M/L_V ~ 0.8, a factor of ~5 higher than measured for LBGs. We infer from our small sample that DRGs are dustier, more metal rich, more massive, and have higher ages than z=3 LBGs of the same rest-frame V-band luminosity. Their high M/L ratios imply that they contribute significantly to the stellar mass density at z~2.5. [ABRIDGED]
doi:10.1086/422308 fatcat:r2foiunr4fhp3kna5dm5o7tckq