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Abstract—In this paper, we propose a robust-hash function
based on random Gabor filtering and dithered lattice vector
quantization (LVQ). In order to enhance the robustness against
rotation manipulations, the conventional Gabor filter is adapted to
be rotation invariant, and the rotation-invariant filter is random-
ized to facilitate secure feature extraction. Particularly, a novel
dithered-LVQ-based quantization scheme is proposed for robust
hashing. The dithered-LVQ-based quantization scheme is well
suited for robust hashing with several desirable features, including
better tradeoff between robustness and discrimination, higher
randomness, and secrecy, which are validated by analytical and
experimental results. The performance of the proposed hashing
algorithm is evaluated over a test image database under various
content-preserving manipulations. The proposed hashing algo-
rithm shows superior robustness and discrimination performance
compared with other state-of-the-art algorithms, particularly in
the robustness against rotations (of large degrees).

Index Terms—Dithered lattice vector quantization (LVQ), fea-
ture extraction, image authentication, robust hashing.

I. INTRODUCTION

I N cryptography, hash function serves as an effective tool for
message authentication. Hash function (such as MD5 and

SHA-1) defines a mapping from an arbitrary-length message to
a short digest (i.e., hash string) [1]. In order to accomplish au-
thentication, the avalanche effect is a desired property of crypto-
graphic hash function, such that a single bit modification on the
message can lead to significant changes in hash string. However,
the excessive alertness of cryptographic hash function limits its
applications to multimedia authentication. Different from text
message authentication, multimedia authentication places more
emphasis on the integrity and the authenticity of the perceptual
content instead of the digital representation of media data. For
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example, an image should be authentic after Joint Photographers
Expert Group (JPEG) compression as the compressed image can
still faithfully convey the original perceptual content. Therefore,
it is desired that the hash function for multimedia authentication
should be able to distinguish content-preserving manipulations
from malicious tampering. As a consequence, robust hashing [2]
that is tailored to media data has been developed. Robust-hash
function for media can be viewed as a mapping from the percep-
tual content of the media data to hash string; thus it is also re-
ferred to as perceptual hash. As its name implies, the robust-hash
function can tolerate a certain degree of modifications, as long
as the perceptual content of the media data is kept intact. Robust
hashing and semifragile watermarking have composed the main
methodologies for content authentication. Moreover, as a com-
pact representation of perceptual content, robust hash can also
facilitate other content-based applications such as identification
[3], broadcast monitoring [4], and perceptual quality evaluation
[5].

The framework of most robust-hashing algorithms can be
decomposed into two constituents, namely, feature extraction
and quantization [6]. Feature extraction is essential to the per-
formance of robust hashing, where stable and discriminative
features are desired. Quantization is implemented on feature
vectors for data volume reduction, and it can also enhance the
robustness of the hash function. For security considerations,
most robust-hash functions employ key-dependent feature ex-
traction and quantization. Here, we first provide a review of the
state-of-the-art in robust hashing from the aspects of feature ex-
traction, quantization, and security. Moreover, a brief survey of
some emerging novel hashing paradigms is also included.

A. Feature Extraction

Most early robust-hash functions calculate the statistics
in spatial and transform domains as features. For example,
Venkatesan et al. proposed to use the variance of wavelet
coefficients as features [2]. The most important contribution
of this paper is that a paradigm of key-dependent feature
extraction is proposed, and the idea of random tiling has been
widely used in robust hashing. Fridrich et al. developed a
random-projection-based image hashing algorithm, and each
pixel block is projected on a randomly generated matrix [7]. If
the random matrix and the pixel block are viewed as vectors in
high-dimensional space, the result of projection corresponds to
the angle between these two vectors. As a result, the hash string
to some extent can reflect the distribution of image blocks
in high-dimensional space. The first video hashing algorithm
proposed in [8] computes the differences between the mean
values of neighboring blocks in both spatial and temporal
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directions. Its easy implementation and excellent performance
make it suitable for real-time applications such as online video
identifications. The intensity histogram is exploited as the
feature for robust hashing in [9] and [10].

Another category of algorithms exploit the coarse represen-
tation of the input image as features. Based on the fact that the
main structures of an image are stable in content-preserving
manipulations, an iterative geometric hashing algorithm was
proposed in [11], where the main structures detected by it-
erative filtering are binarized as hash string. Moreover, the
edge map is extracted and compressed to form the hash for
content authentication in [12]. Some researchers proposed to
calculate the matrix invariance to enhance the robustness of
the hash function, such as the singular-value-decomposition
(SVD)-based [13] and the nonnegative-matrix-factorization
(NMF)-based [14] hashing. It has been observed in [14] that
the NMF-based hashing shows excellent robustness while its
misclassification rate is lower than that of the SVD-based
hashing. As pointed out in [14], the reason is that NMF has
the ability of learning local image features. Vector quantization
has been also employed as a feature extraction scheme in [15],
where the relationships between the indexes of neighboring
blocks are extracted as hash bits.

Similar to the case in digital watermarking, rotation also
poses great challenges to robust hashing. Therefore, great
efforts have been devoted to exploit rotation-resistant features.
Inspired by the research work in computer vision, some re-
searchers developed robust-hash functions using salient points.
In [6], the salient points are first extracted using the end-stopped
wavelet, and the coefficients are then randomly quantized. The
well-known scale-invariant feature transform descriptor was
employed in robust hashing in [16]. Alternatively, the invari-
ance in the transform domain has been also utilized for hash
computation. In [17], 2-D fast Fourier transform (FFT) is im-
plemented on the autocorrelation of Radon coefficients, and the
FFT coefficients are found to be rotation invariant. Similarly,
the Fourier–Mellin transform was employed in [18] for geo-
metric-invariant feature extraction. The radial-projection-based
hashing algorithm was proposed in [19], where the variances of
the pixels that lie in each radial line are computed as features.

B. Quantization

As previously mentioned, quantization is another component
in robust hashing. However, compared with feature extraction,
the research on quantization is quite rare. For simplicity, most
algorithms generate binary hash strings by comparing feature
data with a threshold [4], [7], [8], which can be viewed as a
two-level quantizer. In order to increase the discrimination of
robust hashing, some algorithms perform finer quantizations on
feature data [6], [18], [20]. Recall that robust hashing is de-
sired to be key dependent in authentication applications; thus,
the quantizer should also exhibit a certain amount of random-
ness. The adaptive quantizer proposed in [20] is widely adopted
in robust-hashing algorithms. The quantizer is designed on the
foundation of nonuniform probabilistic quantization, while it
partitions a random subregion in each interval. The feature data
that lie in subregions are randomly quantized to one of its neigh-
boring indexes. It should be emphasized that the requirement

for quantizer design in robust hashing is different from that in
data compression. In data compression, a quantizer is expected
to yield the least distortion. Nevertheless, a quantizer with low
distortion conflicts with the robustness requirement in robust
hashing since similar features would be mapped to different in-
dexes in fine quantization. In fact, a tradeoff between robustness
and discrimination should be made in developing the quantizer
for robust hashing. Monga et al. proposed a cost function for
feature quantization that evaluates both of the robustness and
discrimination criteria [21]. However, the problem of finding
the optimum solution for the cost function has been proven to
be NP complete in [21]. It has been pointed out in [22] that
uniform quantizers should be a suboptimum choice for robust
hashing. Moreover, the simulations in [22] demonstrate that the
uniform quantizer can achieve a better overall performance than
the nonuniform one.

C. Security

Security is an inevitable issue in authentication applications.
The security of robust hashing has attracted increasing atten-
tions in recent years, and current research works concentrate on
evaluation metrics, theoretical analysis, attacking methods, and
protocols. The first information-theoretic-based metric for secu-
rity evaluation in robust hashing is proposed in [18], where the
differential entropy is used to measure the amount of random-
ness of a given robust-hash function. A secure robust-hashing
algorithm should be characterized by high differential entropy
so that the estimation of the hash string without knowing the
secret key would be computationally tough. The unicity dis-
tance was proposed in [23] to evaluate the security of feature
extraction against chosen message attacks. It is defined as the
minimum number of image-hash pairs required to break a given
robust-hash function. Furthermore, the recent work of Li and
Roy has proven that the information-theoretic security against
forgery under chosen message attacks cannot be achieved in ro-
bust hashing [24]. Nevertheless, this fact will not hamper robust
hashing from being applied in content authentication, as it is
still possible to design a computationally secure hash function,
whose key is still computationally infeasible to be estimated.
Moreover, some protocols have been proposed to enhance the
tampering detection ability of robust hashing. In [25], the fea-
tures extracted from sensitive regions (e.g., the plate number of
a car) are involved in the key generation. In this way, some small
but semantically significant tampering on sensitive regions can
lead to drastic changes in the output hash string.

D. New Hashing Paradigms

Some very recent works are devoted to the development of
new paradigms for robust hashing. For instance, Jin et al. pro-
posed a quantum-hashing (QH) system in [26] for multimedia
identification. The hash value in the QH system is represented
by a qubit, and the weights of the qubit bases correspond
to the uncertainties of the binary hash bits being 0 and 1. It
has been reported that the QH can provide a higher amount
of robustness. In [27], a virtual-watermark-detection-based
robust-hashing scheme was developed. A sequence of pseudo-
randomly generated numbers uniformly distributed in [ 1, 1]
are used as the virtual watermark, and the image features are
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considered as the host signal. Each binary hash bit is generated
by detecting the existence of the given virtual watermark from
the features. Moreover, a hashing system that incorporates
compressive sensing and Wyner–Ziv codec was introduced in
[28]. Compressive sensing is employed to project the image
subblocks onto a number of random bases, and the projections
are then quantized by the Wyner–Ziv encoder to output the hash
string. At the receiver side, the received image and the hash bits
are passed to the Wyner–Ziv decoder for tamper identification,
where the received image that might have been tampered or
distorted serves as the side information of the decoder.

In this paper, we present a robust-hashing algorithm based
on random Gabor filtering and dithered lattice vector quanti-
zation (LVQ). The Gabor filter is attractive for feature extrac-
tion due to its outstanding robustness and discrimination. How-
ever, the conventional Gabor filter is orientation sensitive, which
will lead to poor robustness against rotation. On the other hand,
the deterministic Gabor filtering cannot satisfy the security re-
quirements in authentication applications. Thus, a rotation-in-
variant and random Gabor filter is designed in this paper, where
the conventional Gabor filter is adapted to be orientation in-
dependent and its parameters keep varying during the filtering
process under the control of a secret key. Moreover, we propose
to quantize feature vectors via dithered LVQ in robust hashing.
Because of its random nature, congruent cells, and source-in-
dependent quantization error, the dithered LVQ can lead to ex-
cellent robustness–discrimination tradeoff and security perfor-
mance, which makes it well suited for feature quantization in
robust hashing. Experimental results demonstrate that the pro-
posed hash function shows excellent statistical performance.
By the virtue of the rotation-invariant filter, the robustness of
the proposed algorithm against rotation manipulations is much
higher than the state-of-the-art ones. It is also shown by simula-
tion that the proposed dithered-LVQ-based quantization scheme
outperforms the widely used adaptive quantizer [20] and the uni-
form scalar quantizer (SQ). Analytical results reveal that, com-
pared with other quantizers, the dithered LVQ can resist a higher
amount of distortion, and it can therefore achieve higher ro-
bustness. To the best of our knowledge, this is the first paper
that quantifies the robustness of quantizers for robust hashing.
To sum up, the main contributions of this paper are twofold.
First, a random and rotation-invariant Gabor filter is designed.
Second, the dithered-LVQ-based random quantizer is proposed
as a novel quantization paradigm for robust hashing.

The remainder parts of this paper are organized as follows:
Section II introduces the design of the random Gabor filter and
its application in feature extraction. The dithered-LVQ-based
hashing quantization scheme is illustrated in detail and analyzed
in Section III. In Section IV, the effectiveness of the proposed
hashing algorithm is demonstrated by comparative experiments.
Finally, we close with conclusions in Section V.

II. FEATURE EXTRACTION USING ROTATION-INVARIANT AND

RANDOM GABOR FILTER

A. Extracting Rotation-Invariant Features

The Gabor filter have been successfully applied in various
applications, such as face recognition, texture analysis, retina

identification, edge detections, etc. One reason is that the Gabor
filter can effectively distinguish different patterns in visual con-
tents. Moreover, some other properties of Gabor filter also make
it well suited for robust hashing, such as the high robustness
against distortions [29] and the similarities to the simple cortex
cells in the human visual system [30]. Nevertheless, as it will
be discussed later, the filter response is sensitive to the orienta-
tions of the filter and the input image. The orientation-sensitive
property can benefit some recognition and identification appli-
cations, as it is possible to characterize visual contents along
any direction. However, it will result in a poor robustness of
the hash function against rotation. In this paper, the conven-
tional Gabor filter is designed to be orientation independent,
based on which a rotation-invariant and random feature extrac-
tion scheme is proposed.

A Gabor filter can be obtained by modulating a complex si-
nusoidal plane wave with the Gaussian window. The kernel of a
2-D Gabor filter is shown in (1), where is the frequency of the
sinusoidal plane wave, is the counterclockwise rotation angle
of the Gaussian window and the sinusoidal plane wave, is the
spatial width of the filter parallel with the plane wave, and is
the width perpendicular to the wave. The mesh of the real part
of a Gabor filter and its projection on the -plane are shown in
Fig. 1, where the meaning of each parameter is illustrated in the
projection image, i.e.,

(1)

Given image with its center located in the origin. If
we rotate it around the origin counterclockwise by a degree of

, then the rotated image can be written as

(2)

The filter response of the rotated image is given by

(3)

Consider a Gabor filter with ; if we rotate the coor-
dinate systems and counterclockwise with the
same angle , as shown in Fig. 2, the following result can be
obtained by computing the integration over the rotated coordi-
nate system as

(4)
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Fig. 1. Example of a 2-D Gabor filter with � � �,� � �����, and � � � � �:
(a) Real part of the Gabor filter. (b) Projection of the filter on the ��-plane and
illustrations of the parameters.

where is the filter response of the original
image. Obviously, the rotation of the input image results in
a corresponding rotation of the filter response, as well as
a shift of its orientation component. The Gaussian window

is rotation in-
variant when . Hence, the orientation sensitive property
of the Gabor filter is caused by the directional complex sinu-
soidal wave . The features for the hash
calculation are expected to be rotation invariant; therefore, the
sinusoidal wave should be isotropic in all directions. Similar to
[31], we use a circularly symmetric complex sinusoidal wave
instead, as . In this way, a rotation-invariant Gabor
filter can be obtained by modulating the circularly symmetric
complex sinusoidal wave with the Gaussian window, i.e.,

(5)

Now, we investigate the rotation property of the new filter,
based on which the rotation-invariant feature extraction scheme
is developed. Let and denote the re-
sponses of the original and rotated images under the new
filter. Similar to (4), the response of the rotated image is also
computed in the aforementioned rotated coordinate system

Fig. 2. Original and rotated coordinate systems.

. Since the new filter is rotation invariant, namely,
, it is straightforward to show that

(6)

As shown in (6), the filter response of the rotated image is
equal to the rotated response of the original image. If we repre-
sent the filter responses and in the polar
coordinate system as and , where and
denote the radial and angular coordinates of the polar coordinate
system, then the rotation of the input image will lead to the shift
of the angular coordinate of its filter response. Accordingly,
(6) can be rewritten as

(7)

Consequently, the squared magnitude of the filter response is
integrated along a circle centered at the origin with the radius of

as follows1:

(8)

Denote the integration result of as ;
then, it is easy to identify that the integration result is rotation
invariant, i.e.,

(9)

Up to now, we have obtained a stable feature that can be ex-
ploited for hash construction.

B. Randomization of the Rotation-Invariant Filter

As previously discussed, the feature for hash construction is
expected to possess a certain amount of randomness. To facil-
itate secure feature extraction, a random filter is constructed

1It has been observed in our simulations that integrating the squared magni-
tude exhibits stronger robustness than integrating the magnitude itself.
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Fig. 3. Feature extraction using random filter.

based on the rotation-invariant filter. The random filter is de-
signed to be key dependent, and its kernel keeps varying during
the convolution process. In this paper, the random filter is de-
signed by summing up rotation-invariant filters with random
frequencies, i.e.,

(10)

Frequency in each filter is randomly gener-
ated via a secret key. In (10), tildes are placed over variable
and functions to emphasize their random nature. The random
frequencies vary in the range of . The whole frequency
range is uniformly divided into intervals, and the th random
frequency is selected in the corresponding interval, as

, . It may be argued
that using a single filter with its frequency randomly selected
from the whole range can show a higher degree of ran-
domness. However, a poor discrimination has been observed in
this case. Since the feature computed under a single frequency
can only reflect the information corresponding to a very narrow
band of the spectrum, it may be inadequate in characterizing the
input image. Moreover, from the viewpoint of energy distribu-
tion, most spatial energy of a natural image is concentrated in
the low-frequency band of the spectrum; the low-frequency fea-
tures are therefore prone to have much higher amplitudes than
the features in other bands. Consequently, in the case where each
feature is computed with a single random frequency, the rela-
tionships between the amplitudes of features would highly de-
pend on the selection of random frequencies. As a result, even
for content-distinct images, their hash strings could be very sim-
ilar if their features are computed under the same set of random
frequencies. This issue will be further discussed in Section IV-D
with experimental results.

In the proposed algorithm, the parameters of the random filter
keep varying during the calculation of the filter response. How-
ever, it is worth mentioning that the random feature extraction
scheme should maintain the rotation-invariant property of the
filter. Hence, the filter responses on each ring of the input image
are computed via the same filter and a number of random filters
are generated for different rings. As shown in Fig. 3, the features
are extracted from those two rings using distinct filters whose
frequencies are randomly selected.

To sum up, the feature extraction process of the proposed hash
function can be described as follows:
Step 1) Normalize the input image into the standard size of

128 128, where the input image is first smoothed
by a low-pass Gaussian filter of size 5 with a stan-
dard deviation of 3 before scaling. Let denote the
normalized image. Randomly generate a set of radii
for feature extraction via a secret key.

Step 2) For a given radius , the response is calculated for
the ring given by .
Assign a random filter for this ring as (10),
where the frequencies are randomly selected. The
filter responses on this ring are calculated
as

(11)

Step 3) Compute the rotation-invariant feature for ring as
in (12), where denotes the number of the pixels
in . Equation (12) is equivalent to the integration
in (8), while it is expressed in a discrete manner, i.e.,

(12)

Step 4) Repeat steps 2) and 3) until the feature extraction for
all the radii is finished.

As previously discussed, the filter responses located on the
same ring are integrated to obtain rotation-invariant features.
Similarly, the robust-hashing algorithm proposed in [18] ex-
ploits the rotation invariance in the Fourier–Mellin domain by
integrating the transform magnitudes along a circle. However,
our proposed feature extraction scheme differs from that in [18]
in two aspects. First, the transforms in these two algorithms
are implemented in different manners. The proposed algorithm
adopts a random transform kernel (i.e., the rotation-invariant
filter with varying frequencies), and the one in [18] uses a de-
terministic Fourier–Mellin kernel. Second, the frequency se-
lection schemes are different. In the proposed algorithm, the
filter responses computed with the frequencies randomly se-
lected from each interval of the frequency range are involved
in generating every individual feature. Thus, the features in the
proposed paper can make a wider and more uniform coverage
of the spectrum compared with those in [18], which results in
the advantage of the proposed algorithm on discrimination as to
be indicated by experimental results. In brief, the contribution of
the proposed algorithm in feature extraction can be summarized
as follows. First, a random filter is designed to extract robust and
secure features for hash computation. Second, the impact of fre-
quency selection on the discrimination of the hashing algorithm
is studied, based on which an efficient random-frequency selec-
tion scheme is developed.

III. FEATURE QUANTIZATION USING DITHERED LVQ

Here, we concentrate on the quantization process of the
proposed robust-hash function. As previously discussed in
Section I-B, the quantization scheme for robust hashing is
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expected to strike a good balance between robustness and dis-
crimination, and it is thus believed that the uniform quantizer
should be a better choice. Another problem to be considered in
the quantizer design is the choice between vector quantization
(VQ) and SQ. It has been demonstrated in [22] that quantizing
feature data in the form of vectors can exhibit more superior
performance than that of scalars. Based on these observations,
uniform vector quantizers should be the most suitable quanti-
zation paradigm for robust hashing, whereas the only uniform
quantizer in the family of VQ is the LVQ. Therefore, in this
paper, we propose to quantize feature vectors using the dithered
LVQ. The dithered LVQ inherits the uniform nature of the lat-
tice quantizer, it can therefore lead to excellent robustness and
discrimination performance. More importantly, the dithering
process can also offer several advantages to robust hashing in
terms of security. First, the randomly generated dither vector
is added to the feature vector before lattice quantization; thus,
different dither vectors can result in a series of possible quanti-
zation results. In this regard, an attacker is unlikely to succeed
in estimating the hash string without knowing the secret key
for dither vector generation. Second, the dithering process can
also reduce the possibility of collision, thus making the finding
of a collision pair even more computationally tough. Third,
the quantization error in the dithered LVQ can be rendered
as source independent, which can enhance the secrecy of the
hash algorithm. Even in the case that the quantization error of
the quantizer is available, the attacker is still not able to learn
anything about of the feature data. Here, we first provide some
preliminaries and notations for LVQ.

A. Preliminaries and Notations

The lattice is a set of regularly spaced vectors (i.e., lattice
points) in the Euclidean space. The -dimensional lattice

[32] consists of the integer linear combinations of basis vec-
tors as

(13)

where are basis vectors, all of which form the
generator matrix of the lattice, as . Let
denote the array of integer coefficients ; then,
any lattice point in can be expressed as . These
infinite lattice points form a structured codebook that can be
used for VQ. LVQ is a mapping in , it maps an arbitrary input
vector to a lattice point, i.e.,

(14)

In an optimum quantizer with minimum distortion, the input
vector is mapped to its nearest lattice point (i.e., codeword).
Therefore, each lattice point forms a Voronoi cell, and the cell
of a given lattice point is defined as

VOR (15)

The Voronoi cells of lattice points are identical, and these
cells generate a regular tiling of the space. Any Voronoi cell
can be obtained by translating the cell of the origin VOR .

According to the definition in [33], the notion of uniform quan-
tizer refers to those with congruent cells. Therefore, LVQ is the
uniform quantizer in multidimensional space.

B. Dithered-LVQ-Based Feature Quantization

In this paper, we adopt the lattice to construct the dithered
lattice quantizer. The reason is that the process of nearest code-
word searching in is quite easy and fast. The lattice is
composed of the 4-D integer vectors with even component sum,
and its generator matrix is

(16)

In what follows, the procedures of quantizing feature vectors
will be described in detail.

1) Feature Vector Formation: Every four neighboring fea-
tures obtained in Section II constitutes one vector for VQ. It
should be noted that a robust-hash function should map an ar-
bitrary input image to a fixed-length binary string. Accordingly,
each feature vector should be quantized to a fixed number of
binary bits. Therefore, the features are first normalized into the
range of [0, 8). The normalized data represent the relationships
between features, and they are more stable than the absolute am-
plitudes of features.

2) Dither Vector Generation: In the dithered LVQ, a random
vector (i.e., dither vector) is added to the input vector. The final
dithered vector is then quantized via LVQ. The study in [34]
shows that the quantization error can be uniformly distributed
in VOR if and only if the dither vector is a Nyquist-V
vector. Let be a vector whose elements are independent and
identically distributed and uniformly distributed in the range of

, ; then, is a Nyquist-V vector [34]. In
this paper, is randomly generated under the control of a secret
key. Dither is then added to the normalized feature vector
as , where denotes the dithered vector.

3) Quantization of Dithered Vectors: The dithered vector
is quantized by finding its nearest lattice point. The nearest in-
teger vector of is first calculated as , where

and denotes the rounding operation. If
is even, is the nearest lattice point of .

Otherwise, the second nearest integer vector is obtained
by modifying only one component of . Let denote the
index of the component in with the largest distance to the
corresponding integer, namely, ; then,

can be obtained by modifying as follows

if
otherwise

(17)

Notice that , is even.
As a result, should be the nearest lattice point of .

4) Binarization of Quantized Vectors: After lattice quantiza-
tion, those dithered feature vectors are mapped to a set of lattice
points (i.e., codewords). The next step is to convert these code-
words to binary bits. In LVQ, labeling schemes are developed to
assign an index for each lattice point. However, these labeling
schemes are not suitable for robust hashing due to the following
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Fig. 4. Dithered-LVQ-based quantization scheme.

considerations. First, the indexes have variable lengths; thus, we
cannot obtain a fixed-length hash string. Second, the distance
between the indexes of neighboring lattice points may be quite
large. As a result, the robustness of the hash function cannot
be guaranteed. Third, some lattice labeling schemes are compu-
tationally intensive. In this paper, each component of the best
matched codeword is independently converted into binary bits
to form the final hash string. Since the dither vector is added to
the normalized feature vector, thus, some components of its best
matched codeword may exceed the range of [0, 8). Therefore,
each component of the best matched codeword is normalized
as . To enhance the robustness
of the hash function, each component of the normalized code-
word is represented by its Gray code.

To sum up, the flowchart of the dithered-LVQ-based quanti-
zation scheme is shown in Fig. 4.

C. Analytical Results for the Dithered-LVQ-Based
Quantization Scheme

1) Robustness Analysis Using Distortion Tolerance: In ro-
bust hashing, the feature data might be changed in the presence
of distortion, while it is expected that the distorted feature could
still be mapped to the same quantization index as the original
one. In this sense, a robust quantizer should be the one that can
tolerate a higher amount of distortion. In other words, the robust-
ness of a quantizer in robust hashing depends on the maximal al-
lowable amount of distortion associated with each quantization
interval. Hence, here, we will give an analytical evaluation of the
robustness of LVQ from the viewpoint of distortion tolerance.
In addition, the comparisons on distortion tolerance among the
LVQ, the adaptive quantizer, and the uniform SQ will be pre-
sented.

We start by estimating the distortion tolerance of LVQ. For
the purpose of easy illustration and computation, we take the
2-D hexagonal lattice as the example, and its generator matrix
can be expressed as

As the Voronoi cells are translationally identical, all the cells
have exactly the same distortion tolerance. As a result, the basic

Fig. 5. Distortion tolerance in LVQ and the adaptive quantizer. (a) LVQ.
(b) Adaptive quantizer.

cell VOR shown in Fig. 5(a) is selected to illustrate the com-
putation of the distortion tolerance.

Given the original vector VOR and dis-
tortion , the hash bits (i.e., the quantization index
of ) will keep unchanged as long as the distorted feature
still lies in the same cell, as illustrated in Fig. 5(a), i.e.,

VOR (18)

Our goal is to estimate the upper bound of the distortion that
can meet the aforementioned requirement. For computational
convenience, cell VOR is approximated by its inscribed
circle, as shown in Fig. 5(a). Accordingly, the original and dis-
tortion vectors are represented in the polar coordinate system
as , . As a result,
(18) can be rewritten as

(19)

where is the radius of the inscribed circle . By solving (19),
we have

(20)

Equation (20) gives the upper bound of the distor-
tion magnitude below which can be mapped to
the same cell as . Since the upper bound depends
on angle of the distortion and the original feature

, we denote it by (or
equivalently ), and we have

.
Consequently, we estimate the distortion tolerance for each
individual component of the feature vector so that the distortion
tolerance of LVQ can be compared with those of the 1-D SQs.
Taking the horizontal component for example, the maximal
amount of allowable distortion is .
In order to make a complete evaluation of distortion tolerance,
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we calculate the expectation of over the domain of
and . Let denote the probability of the

feature vector, and the distortion tolerance of LVQ is given by2

(21)

Angle is uniformly distributed as . Let us
take the independently and normally distributed feature for in-
stance, where , and

; then, the in (21) can be written as

(22)
In the hexagonal lattice, the inscribed circle has a normal-

ized radius of . We compute (22) numerically, and the
result shows that .

For comparison purposes, the distortion tolerance of the adap-
tive quantizer and the uniform SQ are also estimated and com-
pared with that of the LVQ. It is obvious that the distortion toler-
ance of a quantizer depends on its average step size. Hence, the
distortion tolerance is only comparable among the quantizers
with the same average step size. In the following discussions,
the adaptive quantizer and the uniform SQ under consideration
are all in the range of [ 8, 8], with eight levels. As a result, both
of these two SQs have an average step size of 2 that is equal to
the diameter of the inscribed circle of VOR in LVQ. In this
way, a fair comparison can be made.

In what follows, the distortion tolerance of the adaptive quan-
tizer will be estimated. Here, we concentrate on the determin-
istic version of the adaptive quantizer, where no random region
is assigned in each quantization interval. The quantization inter-
vals are divided according to the distribution of the
feature, i.e., , such that

(23)

where is the level of the quantizer. As shown in Fig. 5(b),
for a given feature data , the maximal allowable
distortion is

(24)

Considering the eight-level adaptive quantizer operating in
the range of [ 8, 8], its distortion tolerance can be obtained by
calculating the expectation of , i.e.,

(25)

As in LVQ, the value of is numerically estimated for
normally distributed features, and we have . Like-

2Although we take the horizontal component of the feature vector to calculate
the distortion tolerance of LVQ, it should be noted that the result for the vertical
component is exactly the same due to the symmetry of the integral. The integral
in the denominator of (21) is used to normalize the probability of the vectors
within � (i.e., ������ in the numerator).

wise, the distortion tolerance of the uniform SQ is obtained,
while the detailed calculation is not presented here for the sake
of brevity. The result reveals that the distortion tolerance of the
uniform SQ is . It is evident that LVQ can tol-
erate a larger amount of distortion compared with the two SQs.
In other words, LVQ is superior to both adaptive and uniform
SQs in terms of robustness.

2) Randomness Analysis Using Entropy: Here, we eval-
uate the randomness of the dithered-LVQ-based quantization
scheme using the entropy metric proposed in [18]. As described
in Section III-B, the dithered vector is quan-
tized by LVQ. According to the generator matrix of , each
dimension of can be written as

(26)

The dithered vector can be quantized to a series of pos-
sible codewords when varies in , . For a given
input vector , we investigate the possibility of the nearest code-
word for its dithered vector, based on which the entropy of the
random quantizer is calculated. The randomness of the quanti-
zation results depends on the value of , and we take
as the example to analyze the entropy of the dithered LVQ. As
discussed in Section III-B, the nearest integer vector is
first calculated for . According to (26), the component ranges
of are as follows when :

(27)

If is not a lattice point in , the second nearest in-
teger vector is calculated as the best matched codeword,
as shown in (17). It is easy to verify that the components of

are also within the range in (27). By combining those
possible components in (27), we can obtain vec-
tors. Half of these vectors have even component sum; hence,
there are 94 possible codewords for . These codewords
have approximately equal probabilities as ,

. Thus, the average entropy per component of
the codeword in the -based dithered LVQ is

(28)
This entropy rate is also compared with that of the adaptive

quantizer. It has been derived in [18] that the entropy of the
adaptive quantizer is , where is
the portion of the random region in each interval. The upper
bound of is 0.721, which is lower than that of the dithered
LVQ. Therefore, the dithered LVQ can yield a higher amount of
randomness than the adaptive quantizer.

In Section IV, the randomness of the dithered LVQ and the
adaptive quantizer will be further demonstrated with experi-
mental results, and the focus is placed on the amount of the per-
turbation introduced to the final hash value.

3) Analysis on the Selection of Lattice: The selection of a
proper lattice is one of the primary concerns in the proposed
feature quantization scheme, and two factors have to be consid-
ered, i.e., the category and the dimensionality of the lattice. In
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this section, we analyze the influence of these two factors on the
performance of the lattice quantizer in robust hashing.

The quantizer in the proposed hashing algorithm is con-
structed by , which belongs to the family of checkerboard
lattices. The primary reason is that the lattices form the
checkerboard family, denoted as , have fairly low encoding
complexities. In what follows, we first analyze the encoding
complexity of the lattice and then compare it with another
two commonly used lattices and . As discussed in
Section III-B3, an arbitrary input vector can be mapped to
its nearest lattice point by one rounding operation of the
vector and, at most, one addition operation. Hence, its encoding
complexity increases in proportion to the dimensionality of the
lattice as . For the lattice, we take the fast encoding
algorithm introduced in [35] as the example to analyze its
encoding complexity. is an -dimensional lattice whose
lattice points are those integer vectors with zero component
sum. In searching the nearest lattice point of an input
vector, the sorting of vector elements is the dominant part of the
complexity. If we only take the sorting operation into account,
the encoding complexity of can be expressed as .

is the dual lattice of and can be written as the union of
translations of , i.e., , where

is the th translation vector [35]. Therefore, its encoding com-
plexity is times that of [35], namely, .
Apparently, has the lowest encoding complexity among
these three common lattices. The low encoding complexity
of could benefit the applications of robust hashing on
large-scale image databases.

The dimensionality of the checkerboard lattice is set to four
in the proposed paper, and now, we investigate the relationship
between the dimensionality of the lattice and the performance
of the quantizer. The performance of an LVQ in robust hashing
depends on the volume of its quantization cell. The volume of
the quantization cell in LVQ can be calculated as [32],
where denotes the determinant of a matrix and is the
generator matrix of the lattice. According to the definition of
the lattice, its generator matrix can be expressed as

(29)

where is the -dimensional vector
with the elements of all zero, is the

-dimensional vector with the elements of all one, and
is the identity matrix. It is straightfor-

ward that for any . Accordingly, the quantization
cells in the quantizers constructed by the lattices with dif-
ferent dimensionalities have exactly the same volume. There-
fore, it can be concluded that different selections of the lattice
dimensionality will not affect the performance of the quantizer
in robust hashing.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Experimental Setup

A number of experiments and comparisons are carried out
to evaluate the efficiency of the proposed algorithm. We start

this section by describing the experimental setup, including the
test base, comparative algorithms, and the associated parameter
settings. The test database for robustness and overall statistical
performance evaluation contains 500 gray-level images, and it
is composed of the images in the Photography Image Database
[36], standard benchmark images, scenery pictures captured by
digital cameras, and those collected from the Internet. The test
set for measuring the collision rate is even larger, and it contains

images since the collisions between hash strings could be
only observed when the number of test images is large enough.
To the best of our knowledge, this should be the largest scale
image database for collision rate evaluation in robust hashing. A
large portion of the images are collected from publicly available
image databases, including ImageNet [37] and the database for
object recognition [38]. The test images in this paper are of var-
ious sizes so that it can simulate the case in more practical appli-
cations with varying image size. The widths and the heights of
the test images range from 96 to 4272. Some typical sizes are 96

96, 128 128, 256 256, 384 256, 400 300, 512 512,
1024 678, and 2848 4272. Four state-of-the-art hashing al-
gorithms are simulated and compared with our proposed one, in-
cluding the NMF-Hash in [14], the RASH in [19], the compres-
sive-sensing-based hashing (CS-Hash) in [39], and the Radon-
transform-based hashing (Radon-Hash) in [40]. The parameter
settings in each algorithm are as follows. In the proposed algo-
rithm, the random filter for each ring is the summation of ten
rotation-invariant filters with random frequencies, and the fre-
quency of the th rotation-invariant filter is randomly selected
from , . Parameter in each
rotation-invariant filter shown in (5) is set to one. Forty rings are
generated for hash computation, and each has a width of three
pixels.3 The generator matrix for constructing the dithered LVQ
is the same as that shown in (16). In NMF-Hash, the number of
randomly selected subimages is , the parameters for ma-
trix factorization are and , and the size of subim-
ages is 100 100. In order to output the binary hash string, the
features are finally quantized using an eight-level adaptive quan-
tizer. In RASH, totally 180 projection lines are generated with
the angle varying from 1 to 180 , and the variance of the pixels
within each line are calculated. Forty lowest frequency discrete-
cosine-transform coefficients of the variances are then quantized
by a uniform quantizer to output the hash string. The param-
eter setting of CS-Hash is the same as described in [39], where
the scrambled block Hadamard ensemble matrix is chosen as
the measurement matrix in compressive sensing, and the com-
ponents of the measurement vector are quantized by a 32-level
nonuniform quantizer. In Radon-Hash, the matrix of the Radon
transform coefficients is uniformly divided into 40 20 blocks,
and the mean value of each block is calculated. The two-level
Haar wavelet is adopted to decompose the mean value map for
hash computation as in [40]. Then, the Fourier–Mellin-trans-
form-based hashing algorithm (FM-Hash) that was developed
in [18] to tackle rotation distortions is also simulated, and the

3The number of the selected rings depends on the application scenario. In
content authentication, the rings should make a full coverage of the image, while
in the applications with less rigorous requirements on false acceptance, a fewer
number of rings could be selected to make a tradeoff between identification
accuracy and computation complexity.
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performance of our proposed paper and FM-Hash is compared
in all the rotation related manipulations. In FM-Hash, each fea-
ture is calculated using the transform coefficients on five ran-
domly selected circles in the Fourier–Mellin domain, and totally
360 equidistant coefficients are sampled on each circle. As sug-
gested in [18], the features are quantized by the adaptive quan-
tizer. The numbers of the hash bits in the proposed algorithm,
NMF-Hash, RASH, CS-Hash, Radon-Hash, and FM-Hash are
120, 150, 200, 385, 200, and 200, respectively. All the experi-
ments are carried out in MATLAB R2008b on a desktop com-
puter with 2.8-GHz dual-core central processing unit and 2-Gb
random access memory. The detailed simulation and the com-
parison results are presented in the following subsections.

B. Robustness Against Content-Preserving Manipulations

The robustness of the proposed hashing algorithm is
evaluated using a series of content-preserving distortions,
including average filtering, median filtering, blur, Gaussian
noise addition, JPEG compression, histogram equalization,
rotation cropping, rotation scaling, and nonsymmetric rota-
tion. In rotation cropping and rotation scaling, the rotated
images are cropped and scaled, respectively, to fit the orig-
inal size. In nonsymmetric rotation, the input image is first
horizontally translated by 8 and 16 pixels, respectively, and
the rotation cropping manipulation is then implemented on
the translated image. The robustness of each hash function is
evaluated by calculating the distance between the hash strings
of the original image and its distorted version. The normalized
hamming distance (NHD) is adopted as the distance metric
for hash comparison. The NHD curves of these hash functions
under each distortion are displayed in Fig. 6. Here, we place
more emphasis on the simulations for rotation-related distor-
tions by including more comparative algorithms. As shown
in Fig. 6(g)–(j), the rotation-resistant FM-Hash is simulated
as an extra comparative algorithm. Since those alignment
preserving distortions such as JPEG compression are relatively
easy to deal with and the other comparative algorithms can
already represent most categories of state-of-the-art hashing
algorithms, FM-Hash is not included in Fig. 6(a)–(f) for perfor-
mance comparison. As shown in the figure, our proposed hash
function exhibits satisfactory robustness even in the presence
of large degree rotations. It is shown in Fig. 6(g) that the NHD
of our proposed algorithm is 0.05 at the rotation angle of 80 ,
which is much lower than that of the other five algorithms.
In rotation+scaling, Radon-Hash shows better robustness than
other algorithms owing to the fact that the relationships be-
tween Radon transform coefficients are invariant to the scaling
operation that follows the rotation. However, both FM-Hash
and the proposed algorithm outperform Radon-Hash in terms
of the robustness against rotation+cropping and nonsymmetric
rotation manipulations, since Radon-Hash could not resist the
cropping and translation operations.

C. Discrimination, Confusion, and Diffusion

This section focuses on the capability of the proposed hashing
algorithm in discriminating between content distinct images, as
well as its sensitivities to the changes in the image content and
the secret key. We start this section by measuring the collision

rate of the algorithm. The hash values of images in the
test database are computed and compared. The hash values of
the test images are first calculated with distinct keys, and the
hash distances are computed for each pair of images. No colli-
sion is observed in this case. The average NHD between hash
values is 0.498, which is consistent with the expectation that
nearly 50% of the bits are different in the hash strings of con-
tent-distinct images. It should be noted that, in key-dependent
hashing, the hash value is determined by both the content of
the image and the key for hash computation. Hence, different
key selections will definitely decrease the collision rate. For this
reason, the collision rate of the proposed hash function is also
evaluated in the case where the hash values of all the test images
are computed under a fixed key. Hash collisions are detected in
this case with the rate of , and the average NHD be-
tween hash values is 0.478.

The fragility of the hash function to malicious tampering is
also investigated here. Content modifications are imposed on
original images to alter their semantic information, and the orig-
inal and tampered images are shown in Fig. 7. The original
beach image shown in Fig. 7(a) is tampered by placing two sail-
boats on the beach. Almost 10% pixels are modified by object
insertion, and the NHD between these two hash strings is 0.55.
The tampering on the other two images is spatially slight but
semantically significant, as shown in Fig. 7(d) and (f), where
only a tiny fraction (less than 0.5%) of the pixels are modified
but they could cause drastic changes on semantic information.
For the two images displayed in Fig. 7(c) and (e), the hash dis-
tances between the original and tampered images are 0.46 and
0.33, respectively. The results reveal that the proposed hashing
algorithm is also sensitive to spatially slight but semantically
significant tampering, with some possible reasons as follows.
First, the random filter in the proposed algorithm is designed to
cover a wide range of frequencies, and thus, the filter responses
corresponding to middle and high frequencies can be quite sen-
sitive to malicious tampering. Second, the tampered region in
the forgeries such as object insertion and removal is usually lo-
calized within a neighborhood of an image and covers several
neighboring rings, which can consequently result in remarkable
changes on filter responses. Moreover, the normalization of fea-
tures can also improve the sensitivity of the algorithm. If the
minimal or maximal feature is altered by tampering, all the nor-
malized features will be accordingly changed since both the two
values are involved in computing each normalized feature.

In addition, the confusion and diffusion capabilities of the
proposed hash function are assessed with the test method pro-
posed in [41]. The confusion of key-dependent robust hashing
indicates the sensitivity of the output hash to the change in the
secret key. In the simulation, the secret key for hash computa-
tion is increased by one at each time, and the distances between
the hash values computed with the initial key and changing keys
are then calculated. Fig. 8(a) shows the hash distance at each
time during the variation of the secret key, from which it can
be seen that the proposed algorithm shows satisfactory confu-
sion capability. The diffusion of the algorithm is investigated by
comparing the distance between the hash values of the original
test image and its tampered versions with substituted percep-
tual units. The perceptual unit for a 512 512 image is defined
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Fig. 6. Performance comparisons on the robustness against content-preserving manipulations.

as a 16 16 block in [41]. Both the localized and distributed
substitutions mentioned in [41] are implemented. In localized
substitution, the substituted perceptual units are localized within

a specific neighborhood in the test image, while in distributed
substitution, the position of each substituted perceptual unit is
randomly selected. The hash distances between the original and
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Fig. 7. Original and tampered images. (a), (c), (e) Original images. (b), (d),
(f) Tampered images.

tampered images with increasing numbers of substituted blocks
are calculated. Fig. 8(b) shows the plot of the hash distance
versus the number of substituted blocks in both localized and
distributed substitutions. Compared with the algorithms tested
in [41], the proposed algorithm shows a stronger diffusion ca-
pability in localized substitution. However, the diffusion capa-
bility of the proposed algorithm in the distributed substitution
is weaker than that in the localized substitution, with the major
reason as follows. In distributed substitution, since the substi-
tuted blocks are separately distributed, each individual 16 16
block can only modify a tiny minority of the pixels on the rings
for feature extraction. Apparently, the changes are diluted in dis-
tributed substitution. Therefore, with the same number of sub-
stituted blocks, the changes on features imposed by distributed
substitution are with much smaller significance than those im-
posed by localized substitution.

D. Overall Performance Evaluation Using ROC Curve and
EER

Here, we focus on the overall performance of the proposed
hashing algorithm. The overall performance of each algorithm is
first assessed using the receiver operating characteristic (ROC)
curve that demonstrates the relationship between the probability
of correct detection and the false rejection rate (FRR) in
hash comparison. The ROC curve can quantify the tradeoff of
the hashing algorithm between robustness and discrimination.
For comparison purpose, the ROC curves of all the comparative
algorithms are plotted in the same figure, as shown in Fig. 9. In
addition, the equal error rates (EER) of these hash functions are
computed as a quantity criterion for performance comparison,
as tabulated in Table I. As shown in the ROC curves and the
EER values, our proposed algorithm shows remarkable supe-
riority over the other five algorithms in rotation+cropping and

Fig. 8. Confusion and diffusion capabilities of the proposed algorithm.
(a) Confusion capability. (b) Diffusion capability.

nonsymmetric rotations due to its robustness against the rota-
tions of large degrees. It has been revealed in Fig. 6(h) and (j)
that compared with the proposed algorithm, FM-hash can pro-
vide a higher degree of robustness in rotation+scaling and non-
symmetric rotation, while the ROC curves demonstrate that the
proposed algorithm is superior to FM-Hash in the overall per-
formance. This fact implies that the proposed algorithm is more
discriminative than FM-hash. As mentioned in Section II-B, the
proposed algorithm can achieve a better discrimination since its
random-frequency selection scheme can make a wider and more
uniform coverage of the spectrum in each feature. More detailed
discussions on the relationship between random-frequency se-
lection and discrimination will be presented in the following
subsection.

In previous simulations, each input image and its distorted
versions are included in the set of reference images for hash
comparison so that the FRR can be estimated. However, in the
applications such as broadcast monitoring, the input image may
not be present in the reference database, and the false accep-
tance rate (FAR) should be considered. Thus, simulations are
performed to evaluate the FAR of the proposed algorithm in
such case by taking broadcast monitoring as the example. Two
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Fig. 9. ROC curves of different hashing algorithms under content-preserving manipulations.

image sets are involved in the simulation, namely, the sets of
test images and reference images. The test set contains 1000
images selected from the Uncompressed Color Image Database
[42], and the test images are used as the input of the broadcast
monitoring system. The reference image set is the one used in
discrimination assessment that is composed of images.

None of the images in the test set is included in the reference
set; thus, these two image sets can be used to simulate the case
where the input image is not present in the reference database.
The NHD between the hash strings of the test and reference im-
ages is compared against a threshold to decide whether the test
image is perceptually identical with any image in the reference
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TABLE I
COMPARISONS ON EER

Fig. 10. Variation of FAR with hash comparison threshold.

database. The plot of FAR versus the threshold is displayed in
Fig. 10.

E. Impact of Random-Frequency Selection on Discrimination

In the proposed random filter, ten random frequencies are
selected from each interval of the frequency range, and the
reason is that a wider coverage of the spectrum in each in-
dividual feature can lead to better discrimination of the hash
function. The explanation of this phenomenon was given in
Section II-B. Here, experiments are conducted to investigate
the relationship between the discrimination and the number of
random frequencies. The number of frequencies for computing
each feature varies from 1 to 14 in the simulation, and we assess
the discrimination of the algorithm under different parameter
settings. The plot of the average hash distance between con-
tent-distinct images versus the number of random frequencies is
presented in Fig. 11. As shown in the figure, the discrimination
becomes better as the number of random frequencies increases,
and a satisfactory discrimination can be achieved when ten
frequencies are selected. Although selecting one frequency in
the whole range can result in higher randomness, it would sig-

Fig. 11. Discrimination of the hashing algorithm versus the number of random
frequencies.

nificantly degrade the discrimination of the hash function since
the average hash distance between content-distinct images is
only 0.21 in this case. Obviously, the features extracted using
very few frequencies cannot effectively distinguish content-dis-
tinct images. Another experiment is carried out to demonstrate
this fact. In the simulation, 40 features are extracted from two
distinct images with one and ten random frequencies for each
feature, respectively. As shown in Fig. 12(a), which corre-
sponds to the case of single frequency, the feature curves of
the two images have almost identical shapes. Accordingly, the
quantization indexes of the feature data could be highly similar
for these two images, which can explain the poor discrimination
in this case. On the contrary, the curves of the features extracted
from the two images are quite different when each feature is
computed with ten random frequencies, as shown in Fig. 12(b).

F. Performance Evaluation of Quantization Schemes

1) Performance Comparisons Between LVQ and SQs: Here,
the overall performance of the dithered-LVQ-based quantiza-
tion scheme is investigated and compared with that of the adap-
tive quantizer and the uniform SQ. The feature data extracted
by the random Gabor filter are quantized by three quantizers, re-
spectively. The parameter setting for dithered LVQ is the same
as that discussed in Section III, and the two SQs contain eight
levels. We choose the average filtering as the distortion for per-
formance evaluation. The NHD curves of the three quantization
schemes are plotted in Fig. 13(a), from which we can see that
the dithered LVQ outperforms the two SQs in terms of robust-
ness. This observation is consistent with the analytical results of
robustness presented in Section III-C.

The overall performance of quantization schemes is com-
pared via ROC curves, as shown in Fig. 13(b). As revealed in
the figure, the overall performance of the dithered LVQ out-
performs the other two quantizers. The dithered LVQ and the
uniform SQ can make a better balance between robustness and
discrimination than the adaptive quantizer. Moreover, it is inter-
esting to note that the multidimensional uniform quantizer (i.e.,
LVQ) outperforms the scalar one.
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Fig. 12. Features extracted from two distinct images using different numbers of
random frequencies: (a) Single random frequency. (b) Ten random frequencies.

2) Randomness Evaluation for Key-Dependent Quantizers:
Both of the dithered LVQ and the adaptive quantizer are key-
dependent random quantizers. The randomness of these two
quantizers has been investigated in Section III with the entropy
metric proposed in [18]. Here, the randomness of key-depen-
dent quantizers is further evaluated by measuring the amount of
the perturbation introduced to quantization results.

In the dithered LVQ, the feature vector could be quantized to a
number of possible lattice points under different dither vectors.
As mentioned in Section III, a random vector whose compo-
nents are independently and randomly drawn from the uniform
distribution on , , is involved in generating the
dither vector. Accordingly, the perturbation on quantization re-
sults imposed by the dithered LVQ is determined by the value
of . Simulations are performed to measure the amount of per-
turbation with varying from 1 to 20 by a step size of 1. For
each value of , 100 dither vectors are randomly generated to
quantize the same set of features, and the average NHD between
the output hash values is calculated. The plot of average NHD
versus is shown in Fig. 14. We observe that the average NHD
rapidly increases with when . Once exceeds 7, the av-
erage NHD maintains to be close to 0.5, which indicates that the

Fig. 13. Performance comparison between quantization schemes: (a) Robust-
ness. (b) Overall performance.

same set of features could be mapped to statistically indepen-
dent hash values under different dither vectors. It implies that
a large value of may benefit the randomness of the quantizer,
and could be the suitable choice.

For comparison purpose, the amount of the perturbation intro-
duced by the adaptive quantizer is also measured. The amount
of the perturbation on quantization indexes is determined by the
portion of the random region in each quantization interval that
is denoted by . As mentioned in [18], ; hence, the max-
imum amount of perturbation can be achieved when .
The same set of features are quantized by the adaptive quantizer
with under 100 different keys, respectively. It has been
observed that the average NHD between the output hash values
is 0.15, which indicates that the dithered LVQ can introduce a
higher amount of perturbation to quantization results than the
adaptive quantizer.

3) Impact of Quantizers’ Parameter Setting on Algorithm
Performance: All the aforementioned quantizers contain sev-
eral parameters, such as the average step size of the SQ, the lat-
tice dimensionality, and parameter of the dithered LVQ. Here,
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Fig. 14. Perturbation on the output hash imposed by dithered LVQ under dif-
ferent values of �.

simulations are carried out to demonstrate the impacts of these
parameters on the performance of the hashing algorithm.

The performance of an SQ in robust hashing depends on its
average step size. The increase in the average step size can lead
to the improvement of its robustness and the degradation of its
discrimination, and vice versa. We take the uniform quantizer in
the range of [ 8, 8) as the example to show the relationship be-
tween the average step size and the quantization performance,
and the number of quantization levels is set to 4, 8, 16, and 32,
respectively. As before, the performance of the quantizer is eval-
uated by selecting the average filtering as the distortion. The
NHD and ROC curves of the quantizers with different param-
eter settings are presented in Fig. 15. The NHD curves show
that the robustness of the quantizer degrades as the number of
quantization levels increases, while the overall performance of
the quantizer is nearly unaffected since the ROC curves of the
quantizers with different parameters almost coincide with each
other. It can be inferred that the changes on robustness and dis-
crimination are counteracted in the overall performance of the
quantizer.

The analytical results in Section III-C reveal that the quanti-
zation performance of a -based LVQ in robust hashing is in-
dependent of the dimensionality of the lattice. Simulations are
conducted here to confirm this observation, where a series of
lattices with and are used to build the quantizer, re-
spectively. The performance of these lattice quantizers are com-
pared with that of the -based quantizer presented in Fig. 13.
The experimental results confirm that, in spite of their differ-
ences on dimensionality, those -based lattice quantizers ex-
hibit exactly the same performance since their NHD and ROC
curves are identical with those shown in Fig. 13.

As previously discussed, the randomness of the dithered LVQ
is determined by the value of parameter , and a large value
could introduce a sufficient amount of perturbation on the output
hash. Here, our focus is placed on the impact of on the overall
performance of the hashing algorithm. We use the average fil-
tering to produce the distortion and then plot the ROC curves
under and , respectively. For comparison pur-
poses, all the ROC curves are plotted in the same figure. As in

Fig. 15. Performance comparison between the SQs with different numbers of
quantization levels. (a) Robustness. (b) Overall performance.

Fig. 16, although the curves are shown in a high magnification
level, it is still difficult to distinguish among the curves. It can
be seen that the overall performance is independent of , with
some further explanations as follows. The decision process of
robust hashing in identifying the perceptual similarity between
the query and reference images can be formulated as the fol-
lowing hypothesis testing problem, where and corre-
spond to the cases that the query image is perceptually identical
and distinct with the reference one. Let denote the dithered
feature of the query image, denote the feature of the reference
image, denote the noise introduced by content-preserving
distortions, denote the feature of the image that is percep-
tually distinct with the reference one, and denote the dither
vector. Then

(30)
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Fig. 16. ROC curves (magnified) under different values of �.

Since is independent of , , and , the dithering process
will not affect the correct detection probability and the FRR
of the hashing algorithm. As a result, the ROC curve is indepen-
dent of or .

V. CONCLUSION

In this paper, we have presented a robust-hash function that
employs the random Gabor filtering and the dithered LVQ. A
random and rotation-invariant filter has been developed for fea-
ture extraction. It has been observed that the extracted features
show remarkable robustness to rotation manipulations. Experi-
mental results have demonstrated that the proposed paper also
exhibits better statistical performance compared with some rep-
resentative hashing algorithms. Moreover, the dithered LVQ that
can produce satisfactory statistical and security performance has
been employed as the quantizer for robust hashing. The robust-
ness of different quantization schemes has been examined. As
it has been validated by the simulation and analytical results,
LVQ is superior to the adaptive quantizer and the uniform SQ
in robust hashing.
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