A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2017; you can also visit the original URL.
The file type is application/pdf
.
3D shape estimation in video sequences provides high precision evaluation of facial expressions
2012
Image and Vision Computing
Person independent and pose invariant estimation of facial expressions and action unit (AU) intensity estimation is important for situation analysis and for automated video annotation. We evaluated raw 2D shape data of the CK+ database, used Procrustes transformation and the multi-class SVM leave-one-out method for classification. We found close to 100% performance demonstrating the relevance and the strength of details of the shape. Precise 3D shape information was computed by means of
doi:10.1016/j.imavis.2012.02.003
fatcat:7dnrt5yccbe2daj6gmul52pe2a