ALGORITHMIC RANDOMNESS, PHYSICAL ENTROPY, MEASUREMENTS, AND THE SECOND LAW [chapter]

W. H. Zurek
1992 Computation: The Micro and the Macro View  
+lq)rit tllllic illftmlu;tt i(m ro[ltmlt is tvllml to the size -i[i the Illllllbrr of I]its -,)f ,lIt' .=!umtt'st~)rt)granl for (n Ilrlivtirsid Tlu-illg lllacl]il~c wl;ich can rt']m)(lllf"t' ( it'. I)hN. wit]l t}lt' rtvl[lisitt' il("("llr~~) [i Stiltt! of il I)hysictd S~St Clll. In mntrnst to thr Stiltisti(':d 13(dtzmmIm-I. Introduction /1, ,11 = -Tr,divgi) " 1 . . . (1.2) is ( 1,4) 111this sense H rLxi(lK CM iw regarded as analogous of potential mwl kinetic rnmgy Zh ml EP. Thr prmws whirh
more » ... rts EK into EP is the dynamical twdut im TIM' prfmw which ronwvts H into K is the measuremcmt. The physical cn:mpy S -t11PSIUI1of H MM! h-is conservm{ under thr opt imd ( flissipat ion.bss ) mrawmwwnt am I t hm dtwrw's trrnt mrnt simikr to the total cmergy, which is a constant of motion. 11, Definitions of Algorithmic Rnndoninem
doi:10.1142/9789812812438_0002 fatcat:no6hnxoiujgmzkyrvkyveh3wbe