Feature Focus: Towards Explainable and Transparent Deep Face Morphing Attack Detectors † [article]

Clemens Seibold, Anna Hilsmann, Peter Eisert, Humboldt-Universität Zu Berlin
Detecting morphed face images has become an important task to maintain the trust in automated verification systems based on facial images, e.g., at automated border control gates. Deep Neural Network (DNN)-based detectors have shown remarkable results, but without further investigations their decision-making process is not transparent. In contrast to approaches based on hand-crafted features, DNNs have to be analyzed in complex experiments to know which characteristics or structures are
more » ... y used to distinguish between morphed and genuine face images or considered for an individual morphed face image. In this paper, we present Feature Focus, a new transparent face morphing detector based on a modified VGG-A architecture and an additional feature shaping loss function, as well as Focused Layer-wise Relevance Propagation (FLRP), an extension of LRP. FLRP in combination with the Feature Focus detector forms a reliable and accurate explainability component. We study the advantages of the new detector compared to other DNN-based approaches and evaluate LRP and FLRP regarding their suitability for highlighting traces of image manipulation from face morphing. To this end, we use partial morphs which contain morphing artifacts in predefined areas only and analyze how much of the overall relevance each method assigns to these areas.
doi:10.18452/23539 fatcat:zfd5lbugz5eqnoc7cqabmmok3a