OBTAINING SPARSE SOLUTIONS BY LS SVM METHOD THROUGH SAMPLE CONSTRUCTION BY OPTIMAL EXPERIMENT DESIGN METHOD AND MODEL QUALITY CRITERIA
ПОЛУЧЕНИЕ РАЗРЕЖЕННЫХ РЕШЕНИЙ МЕТОДОМ LS SVM ЧЕРЕЗ ПОСТРОЕНИЕ ВЫБОРКИ С ПОМОЩЬЮ МЕТОДОВ ОПТИМАЛЬНОГО ПЛАНИРОВАНИЯ И ВНЕШНИХ КРИТЕРИЕВ КАЧЕСТВА МОДЕЛЕЙ

Alexander A. Popov, Sharaf A. Boboev
2018 Вестник Иркутского государственного технического университета  
Новосибирский государственный технический университет, Российcкая Федерация, 630073, г. Новосибирск, пр-кт К. Маркса, 20. РЕЗЮМЕ. ЦЕЛЬ. Рассматриваются способы получения разреженных решений на основе метода опорных векторов с квадратичной функцией потерь (LS SVM). МЕТОДЫ. Выполняется разбиение выборки на обучающую и тестовую части для получения разреженного решения. Приводится последовательный алгоритм получения об учающей и тестовой частей выборки наблюдений с использованием метода
more » ... го планирования эксперимента применительно к методу LS SVM. Также приведены последовательные алгоритмы разбиения выборки на части с использованием критерия согласованности. Для проверки работоспособности предлагаемого метода разбиения выборки проведен вычислительный эксперимент. В нем повышение точности решений по LS SVM проводилось посредством подбора масштаба гауссовой ядерной функции. Данный параметр ядерной функции подбирался по минимуму ошибки прогноза на тестовой части выборки. Окончательно точность получаемых решений проверялась по среднеквадратичной ошибке. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ. Вычислительный эксперимент проводился на модельных данных. В качестве модели, порождающей данные, была выбрана нелинейная зависимость от входного фактора. Дисперсия помехи (уровень шума) определялась в процентах от мощности сигнала. Сравнивались три способа разбиения выборки на обучающую и тестовую: путем замены точек, исключение точек и включение точек в обучающей части. Для выбора параметров алгоритма LS SVM использовался также критерий перекрестной проверки. ВЫВОДЫ. Результаты проведенных вычислительных экспериментов показали, что для получения разреженного решения методом LS SVM можно использовать выборку, разделенную на части с использованием D-оптимального планирования эксперимента.
doi:10.21285/1814-3520-2018-1-100-117 fatcat:45cnervnmzeyjgxig3al2hygk4