The Calderón problem with partial data on manifolds and applications

Carlos Kenig, Mikko Salo
2013 Analysis & PDE  
We consider Calderon's inverse problem with partial data in dimensions $n \geq 3$. If the inaccessible part of the boundary satisfies a (conformal) flatness condition in one direction, we show that this problem reduces to the invertibility of a broken geodesic ray transform. In Euclidean space, sets satisfying the flatness condition include parts of cylindrical sets, conical sets, and surfaces of revolution. We prove local uniqueness in the Calderon problem with partial data in admissible
more » ... in admissible geometries, and global uniqueness under an additional concavity assumption. This work unifies two earlier approaches to this problem (\cite{KSU} and \cite{I}) and extends both. The proofs are based on improved Carleman estimates with boundary terms, complex geometrical optics solutions involving reflected Gaussian beam quasimodes, and invertibility of (broken) geodesic ray transforms. This last topic raises questions of independent interest in integral geometry.
doi:10.2140/apde.2013.6.2003 fatcat:226h5ty4orajbk4xbsegejnyzm