A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is application/pdf
.
How Does Batch Normalization Help Binary Training?
[article]
2020
arXiv
pre-print
Binary Neural Networks (BNNs) are difficult to train, and suffer from drop of accuracy. It appears in practice that BNNs fail to train in the absence of Batch Normalization (BatchNorm) layer. We find the main role of BatchNorm is to avoid exploding gradients in the case of BNNs. This finding suggests that the common initialization methods developed for full-precision networks are irrelevant to BNNs. We build a theoretical study on the role of BatchNorm in binary training, backed up by numerical experiments.
arXiv:1909.09139v3
fatcat:7qztdfjizrc4pnlgracihty5vq