A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2019; you can also visit the original URL.
The file type is application/pdf
.
The Simple Chemostat with Wall Growth
1999
SIAM Journal on Applied Mathematics
A model of the simple chemostat which allows for growth on the wall (or other marked surface) is presented as three nonlinear ordinary differential equations. The organisms which are attached to the wall do not wash out of the chemostat. This destroys the basic reduction of the chemostat equations to a monotone system, a technique which has been useful in the analysis of many chemostat-like equations. The adherence to and shearing from the wall eliminates the boundary equilibria. For a
doi:10.1137/s0036139997326181
fatcat:7wdv2gapq5cmvfmxojlyfay7fm