Pure subrings of regular rings are pseudo-rational

Hans Schoutens
2008 Transactions of the American Mathematical Society  
We prove a generalization conjectured by Aschenbrenner and Schoutens (2003) of the Hochster-Roberts-Boutot-Kawamata Theorem: let R → S be a pure homomorphism of equicharacteristic zero Noetherian local rings. If S is regular, then R is pseudo-rational, and if R is moreover Q-Gorenstein, then it is pseudo-log-terminal.
doi:10.1090/s0002-9947-07-04134-7 fatcat:3ya5ukexbbfh7bcojnmkqlhpbu