Auxiliary pattern for cell-based OPC

Andrew B. Kahng, Chul-Hong Park, Patrick M. Martin, Robert J. Naber
2006 Photomask Technology 2006  
As advanced technologies in wafer manufacturing push patterning processes toward lower-k 1 subwavelength printing, lithography for mass production potentially suffers from decreased patterning fidelity. This results in generation of many hotspots, which are actual device patterns with relatively large CD and image errors with respect to on-wafer targets. Hotspots can be formed under a variety of conditions such as the original design being unfriendly to the RET that is applied, unanticipated
more » ... tern combinations in rule-based OPC, or inaccuracies in model-based OPC. When these hotspots fall on locations that are critical to the electrical performance of a device, device performance and parametric yield can be significantly degraded. Previous rule-based hotspot detection methods suffer from long runtimes for complicated patterns. Also, the model generation process that captures process variation within simulation-based approaches brings significant overheads in terms of validation, measurement and parameter calibration. In this paper, we first describe a novel detection algorithm for hotspots induced by lithographic uncertainty. Our goal is to rapidly detect all lithographic hotspots without significant accuracy degradation. In other words, we propose a filtering method: as long as there are no "false negatives", i.e., we successfully have a superset of actual hotspots, then our method can dramatically reduce the layout area for golden hotspot analysis. The first step of our hotspot detection algorithm is to build a layout graph which reflects pattern-related CD variation. Given a layout L, the layout graph G = (V, E c ∪ E p ) consists of nodes V , corner edges E c and proximity edges E p . A face in the layout graph includes several close features and the edges between them. Edge weight can be calculated from a traditional 2-D model or a lookup table. We then apply a three-level hotspot detection: (1) edge-level detection finds the hotspot caused by two close features or "L-shaped" features; (2) face-level detection finds the pattern-related hotspots which span several close features; and (3) merged-face-level detection finds hotspots with more complex patterns. To find the merged faces which capture the pattern-related hotspots, we propose to convert the layout into a planar graph G. We then construct its dual graph G D and sort the dual nodes according to their weights. We merge the sorted dual nodes (i.e., the faces in G) that share a given feature, in sequence. We have tested our flow on several industry testcases. The experimental results show that our method is promising: for a 90nm metal layer with 17 hotspots detected by commercial optical rule check (ORC) tools, our method can detect all of them while the overall runtime improvement is more than 287X.
doi:10.1117/12.692582 fatcat:22a7kr54lngpzmv3bpyh67rswm