Detection of Algorithmically Generated Domain Names Using the Recurrent Convolutional Neural Network with Spatial Pyramid Pooling

Zhanghui Liu, Yudong Zhang, Yuzhong Chen, Xinwen Fan, Chen Dong
2020 Entropy  
Domain generation algorithms (DGAs) use specific parameters as random seeds to generate a large number of random domain names to prevent malicious domain name detection. This greatly increases the difficulty of detecting and defending against botnets and malware. Traditional models for detecting algorithmically generated domain names generally rely on manually extracting statistical characteristics from the domain names or network traffic and then employing classifiers to distinguish the
more » ... hmically generated domain names. These models always require labor intensive manual feature engineering. In contrast, most state-of-the-art models based on deep neural networks are sensitive to imbalance in the sample distribution and cannot fully exploit the discriminative class features in domain names or network traffic, leading to decreased detection accuracy. To address these issues, we employ the borderline synthetic minority over-sampling algorithm (SMOTE) to improve sample balance. We also propose a recurrent convolutional neural network with spatial pyramid pooling (RCNN-SPP) to extract discriminative and distinctive class features. The recurrent convolutional neural network combines a convolutional neural network (CNN) and a bi-directional long short-term memory network (Bi-LSTM) to extract both the semantic and contextual information from domain names. We then employ the spatial pyramid pooling strategy to refine the contextual representation by capturing multi-scale contextual information from domain names. The experimental results from different domain name datasets demonstrate that our model can achieve 92.36% accuracy, an 89.55% recall rate, a 90.46% F1-score, and 95.39% AUC in identifying DGA and legitimate domain names, and it can achieve 92.45% accuracy rate, a 90.12% recall rate, a 90.86% F1-score, and 96.59% AUC in multi-classification problems. It achieves significant improvement over existing models in terms of accuracy and robustness.
doi:10.3390/e22091058 pmid:33286827 pmcid:PMC7597131 fatcat:7bpkcqgcnvhmveahjpmjojou7i