A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2022; you can also visit the original URL.
The file type is application/pdf
.
Scaling AI Projects for Radiology - Causes and Consequences
2022
Artificial intelligence (AI) for radiology has the potential to handle an ever-increasing volume of imaging examinations. However, the implementation of AI for clinical practice has not lived up to expectations. We suggest that a key problem with AI projects in radiology is that high expectations associated with new and unproven AI technology tend to scale the projects in ways that challenge their anchoring in local practice and their initial purpose of serving local needs. Empirically, we
doi:10.3233/shti220387
pmid:35612007
fatcat:igvzl6yikjhl7kzmvegkkyi2xi