
Adaptive Error- and Traffic-aware Router Architecture
for 3D Network-on-Chip Systems

Akram Ben Ahmed, Michael Meyer, Yuichi Okuyama, Abderazek Ben Abdallah
The University of Aizu

Graduate School of Computer Science and Engineering
Aizu-Wakamatsu 965-8580, Japan

E-mail: {d8141104, d8161104, okuyama, benab}@u-aizu.ac.jp

Abstract—The advent of deep sub-micron and 3D integra-
tion technologies has exacerbated reliability issues in packet-
switched on-chip interconnection networks. A lot of researches
have been conducted in order to make these systems immune
to any short-term malfunction or permanent physical damage
while minimizing the performance degradation as much as pos-
sible. In this paper, we present an adaptive Error-, and Traffic-
aware 3D-NoC router architecture, called 3D-Fault-Tolerant-
OASIS (3D-FTO)1. 3D-FTO manages to avoid the system
failure at the presence of a large number of faults and addresses
the fault occurrence in links, input-buffers, and the crossbar,
where the faults are more often to happen. The proposed 3D-
FTO system was synthesized using Synopsis Design Compiler at
45nm CMOS process technology. Evaluation results show that
our 3D-FTO is able to work around different kinds of faults
ensuring graceful performance degradation while minimizing
the additional hardware complexity and remaining power-
efficient.

Keywords-3D NoC; Error-aware; Traffic-aware; Adaptive.

I. Introduction
During the past few decades, a lot of research has been

focusing on Three-dimensional Networks-on-Chips (3D-
NoCs) [3], [4], [5], [6], [7], [8] as an auspicious solution to
alleviate the interconnect bottleneck and reduce the power
consumption in current System-on-Chips (SoCs) designs.
As 3D-NoC architectures started to show their performance
benefits and energy efficiency against 2D-NoC systems,
questions of their reliability to sustain their performance
growth began to arise [9]. This is mainly due to challenges
inherited from both Three-dimensional Integrated-Circuits
(3D-ICs) and NoCs; on one side, the complex nature of 3D-
IC fabrics and the continuing shrinkage of semiconductor
components. Furthermore, the significant heterogeneity in
3D chips that are more likely to mix logic layers with
memory layers adding more complexity and increasing the
fault probability in a system [10]. The other challenge is that
the single-point-failure nature of NoC introduces a big con-
cern to their reliability as they are the sole communication
medium.

1This project is partially sponsored by Competitive research funding, Ref.
P1-12, Fukushima-Japan, and supported by VLSI Design and Education
Center(VDEC), the University of Tokyo Japan, in collaboration with
Synopsys Inc.

As a result, 3D-NoC systems are becoming susceptible
to a variety of faults caused by crosstalk [11], impact of
radiations [12], oxide breakdown [13], and so on [14]. A
simple failure in a single transistor caused by one of these
factors may compromise the entire system reliability where
the failure can be illustrated in corrupted message delivery,
time requirements unsatisfactory, or even sometimes the
entire system collapse.

Many works have been conducted to tackle the fault-
tolerance in NoC systems (2D and 3D) where they can be
classified depending on the target system, the fault’s type,
or the faults’ handling mechanism (e.g., using routing algo-
rithms or architectural solutions). We previously presented
in [1], [2] some of the well-known routing algorithms used
in 3D-NoC systems that focused mainly on link-failure.
Another interesting work presented by Radetzki et al. [14]
gives a survey of the different failure mechanisms, fault
models, detection techniques, and recovery methods used
in the different layers of a given NoC. In this paper, we
focus on works that presented reliable router architectures
for 2D-NoC architecture, but can be adopted in the third
dimension. For instance, Constantinides et al. [15] proposed
the BulletProof router which is based on N-modular redun-
dancy (NMR) technique. The NMR method requires the
presence of N copies of a given targeted component. Thus,
N times extra silicon area is needed; therefore, such method
is very expensive in terms of area. Moreover, as the area
increases the fault occurrence probability increases, as well.
As a result, duplicating components may not lead to endorse
the reliability.

Kim et al. [16] proposed RoCo that employs decoupled
parallel arbiters and uses smaller crossbars for row and
column connections in order to allow the router to be decom-
posed. Look-ahead routing is used to tolerate faults in the
Routing Computation stage (RC). By sharing arbiters from
Virtual Channel Allocation stage (VCA), fault tolerance in
the Switch Allocation stage (SA) can be ensured. However,
this router cannot tolerate faults in VCA and Crossbar
Traversal (CT) stages where the area is more important and
faults are more likely to occur in these stages.

Poluri et al. [17] presented an improved router design



Figure 1. 3D-Fault-Tolerant-OASIS-NoC router architecture.

where they added a small minimal correction circuitry to
provide a better fault-tolerance in each one of the pipeline
stages. The proposed router adds redundant components and
resources sharing to ensure the fault-tolerance in the RC,
VCA, SA, and CT pipeline stages. Evaluation results show
the outperformance of their proposed router and its higher
reliability when compared to earlier works. However, they do
not consider the presence of faults in the input buffer. Buffers
consume the largest portion of area and power; therefore the
probability of fault occurrence is the highest when compared
to the other components of the router.

Vicis is another work proposed in [18] targeting per-
manent faults. The authors presented flexible-fifo to deal
with permanent faults in the input-buffers. To deal with
faults in the crossbar, they introduced Crossbar-Bypass-Bus
that provides an alternative path when a faulty crossbar
link is detected. Vicis suffers from three main drawbacks:
first, this architecture deals with only permanent faults and
does not consider transient and intermittent faults. However,
transient faults cause the majority of failures, (80%) [19],
while the remaining failures originate mainly in permanent
and intermittent faults. On the other hand, this should not
diminish the importance of permanent faults; thus, analyzing
the three types of failures is imperative to represent the
real behavior of 3D-NoC systems. The second drawback
is that when multiple faulty crossbar paths are detected,
flits from different input-ports should compete the access
for this single bypass-bus. This puts under question the
scalability of this approach when the latency may increase
at the presence of more than one faulty crossbar link. Third,
the companion routing protocol contains some restrictions
and turns to ensure the system deadlock-freedom; however,
as we previously said, the addition of such rules may lead

to nonminimal path, thus, increasing the latency of the flit.

II. Router Architecture

Figure 1 represents the high-level representation of 3D-
Fault-Tolerant-OASIS (3D-FTO). The baseline router’s com-
ponent are depicted in white and the added enhancements for
fault-tolerance and robustness are colored. 3D-FTO router
relies on simple recovery techniques based on system adap-
tivity with redundant structural resources to contain faults’
occurrence (in input-buffers, crossbar, and links) and prevent
from the system failure, or information corruption or loss.

As shown in Fig.1, 3D-FTO router contains seven
input-ports, a switch-allocator, a crossbar, and a Fault-
Control-Module (FCM). In this section, we explain the
enhancements added in 3D-FTO router including: first, the
Random-Access-Buffer (RAB) for deadlock-recovery and
fault-tolerance in the input-buffer; second, the Bypass-Link-
on-Demand (BLoD) approach to handle multiple faulty
channels in the crossbar; finally, the FCM module responsi-
ble for the assignment and control of the different detection
and recovery tasks to the previously mentioned techniques.
Look-Ahead-Fault-Tolerant (LAFT) routing algorithm to
tackle link failure was previously presented in [2].

A. Random-Access-Buffer

Figure 2 represents the block diagram of the proposed
Random-Access-Buffer mechanism (RAB). RAB was pre-
viously presented as an efficient and low-overhead solution
to ensure deadlock-freedom [1], [20]. RAB was extended
to be able to detect transient, intermittent, and permanent
faults in the input-buffer. For the detection, we assume the
presence of a module (fault-detect in Fig. 2) that checks the
buffer entries’ fault status. When a fault is detected in one



Figure 2. Random-Access-Buffer block diagram.

of the slots, it can send one of two signals: Int-Tr-faulty-slot
signal to inform the RAB-manager module the presence of
transient or intermittent fault. Then, RAB-manager will take
into consideration the flagged slots when assigning Wr-adr
and Rd-adr addresses, while keeping checking the flagged
slots whether their faults were recovered or not. In the case
where a permanent fault is detected, the fault-detect sends
Perm-faulty-slot signal to the RAB-manager module. This
information is important because if the RAB-manager finds
that only one buffer slot is nonfaulty, and the remaining
ones are permanently faulty, it sends Faulty-buffer signal to
the Fault-control-module to disable the entire input-port and
update the Link-status array (See Fig. 1).

To keep record of the faulty slots, the status register (SR),
previously presented for deadlock-recovery, was extended
to an array that hosts n 2-bit items (where n is the buffer
depth). The value of each item can be 00 to inform that the
corresponding flit is not causing the deadlock and the buffer
slot is not faulty. 01 indicates that the buffer slot is not
faulty but the request of the hosted flit is causing deadlock;
therefore, this slot can be consulted again to check whether
the deadlock is removed or not, but it cannot be used to
store incoming flits to avoid flit overwriting. An element in
the status array is updated to 10, if a transient or intermittent
fault is detected. In this case, the slot cannot be consulted
nor used to store incoming flits (to avoid additional latency
for consulting broken slots). Finally, 11 is used to declare
that the corresponding buffer entry is permanently faulty. As
we previously said, this information will be used to issue
the Faulty-buffer signal. In addition to the timer, the RAB
mechanism is triggered by the fault-detect module where

in case of a transient or intermittent fault is removed from
a given slot, the fault-detect informs the RAB-manager to
update the status array of the corresponding slot to 00 so it
can be used by other incoming flits.

Figure 3 shows an example how the RAB mechanism
works. In each input-port, a RAB-controller (RAB-cntrl)
manages the detection of deadlock and faults as well as han-
dling the proper assignment of Wr-adr and Rd-adr addresses.
In Fig. 3 (a), and after a permanent fault was detected
(red cross) in one of the buffer slots, the RAB-manager
updates the corresponding element in the status array to 11.
Furthermore, by reading the sw-grnt signal received from
the Switch-allocator, the timer issues a deadlock-flag and
the RAB-manager updates the corresponding slot to 01. The
RAB-cntrl reads the head of the next packet in the buffer
and checks whether the requested out-port is different from
the one previously flagged as blocked or not. When it finds
a request whose channel is free, it sends a request to the
Switch-allocator to be served. When the request is granted,
the flits of the granted packet are read from the buffer and
the freed slots can be used to host another incoming packet
which is stored in a slot whose value in the status array is
00. After new flits are written in the buffer, the blocked
packet is checked again (Figure 3 (b)). When the RAB-
cntrl receives a grant for the direction requested (North),
the packet is read from the buffer and the status array is
updated to 00. At the same time, the fault-detect module
has found an intermittent fault (green cross), then again the
status array to 10 to prevent from reading or writing into
the corresponding slot before the fault is removed (Figure 3
(c)).

B. Bypass-Link-on-Demand

The Bypass-Link-on-Demand mechanism, depicted in
Fig. 4 (a), provides additional escape channels whenever the
number of faults in the baseline 7x7 crossbar increases. In
this figure, we considered two Bypass-links for simplicity.
The Ctrl unit, shown in this figure, manages to check the
crossbar link status. In the case where a fault is detected in
one or several links, it sends flags to the FCM which disables
the faulty crossbar links and enables the appropriate number
of bypass channels. The easiest approach is to provide a
dedicated Bypass-Link for each crossbar channel. In this
fashion, both fault-tolerance and performance are guaranteed
because the input-ports requests do not share the Bypass-
Links, even when all the baseline 7x7 crossbar links are
faulty. However, this technique is the same as duplicating
the entire crossbar; therefore, additional area and power
overhead is certain to occur. Additionally, when the fault-rate
is low, only one or two Bypass-Links are enough to handle
the requests of the faulty crossbar-links. According to these
facts, we decided to perform an incremental approach, where
we analyze the used benchmark and the assumed fault-rate
and we increment the number of Bypass-Links until the



(a) (b) (c)
Figure 3. Example of Random-Access-Buffer mechanism for deadlock-recovery and fault-tolerance. Red crosses represent permanent faults, and the green
one represents an intermittent or transient fault

(a) (b)
Figure 4. Example of Bypass-Link-on-Demand.

performance is steady or almost unchanged.
The number of Bypass-links is very important and should

be minimized as much as possible to reduce the area and
power overhead. Therefore, we decided to exploit the unused
crossbar-links already existing in the system. These links are
the ones located at the edges of the network where there
is no neighboring node and, therefore, the corresponding
crossbar link is unused. With this optimization, an important
area and power saving can be achieved while keeping the
performance at its peak.

Assuming the example in Fig. 4 (a) where three faults
are detected: two are permanent in the North- and East-
links (red), and the other one is transient in the West-link
(green). The two available bypass channels are activated to
handle the incoming requests from the different input-ports
allocated to the faulty crossbar links. After a period of time,
the transient fault is removed and the Ctrl module sends
information to the FCM which re-enables again the West-
link and deactivates one of the Bypass-Links (Bypass-2 in
Fig. 4 (b) is deactivated (gray)) as it is no longer necessary.

C. Fault-Control

The Fault-control-module (FCM) is one of the main
components of our system. This is because it manages the

diagnosis and recovery from all kinds of faults in three
main components: inter-router links, input-buffers, and the
crossbar. Starting with the inter-router links, the link status of
each router and those of its neighboring nodes are stored in
a small array named Link-status. This information is always
sent to the LAFT-routing module to be used during the
selection of the Next-port for the next node.

To handle the faults in the crossbar FCM interacts with the
Ctrl unit in the crossbar circuit to exchange fault information
and control signals. As shown in Fig. 4 (a), the Ctrl unit
is the medium between the baseline 7x7 crossbar and the
additional Bypass-links. The main task of this unit is to
detect the presence of faults in the crossbar and to keep
informing the FCM about its fault status. The FCM monitors
this incoming fault information and stores them in a register
named Crss-link status (Fig. 1). When a fault is detected,
the FCM sends three signals concurrently: two for the Ctrl
unit to enable one of the Bypass-links and disable the faulty
crossbar link, and the third one to the Sw-req-cntrl (Fig. 1)
to prevent flits from requesting the faulty crossbar-link and
ask the permission to use one of the Bypass-links instead.
When the number of faults increases, the FCM manages the
fair distribution of the different requests on the available
Bypass-links in a fair way. On the other side, the Ctrl unit



has the task to enable and disable the Bypass-links for power
saving depending on the signals received from the FCM.
This means that when the crossbar is valid, the Bypass-links
are put asleep to save dynamic power (as represented in
Fig. 4 (b)). When faults are detected, the Ctrl unit awakens
the appropriate number of Bypass-links depending on the
information received from the FCM.

III. Evaluation

A. Evaluation methodology

Our proposed 3D-Fault-Tolerant-OASIS (3D-FTO) sys-
tem was designed in Verilog-HDL, and synthesized using
Synopsis Design Compiler with 45nm technology library
[21]. We evaluate the hardware complexity of LAFT router
in terms of area utilization and power consumption (static
and dynamic). To evaluate the performance of the proposed
system, we selected Matrix-multiplication [22] and JPEG-
encoder [23] as real benchmarks and also two traffic patterns:
Transpose [24] and Uniform [25].

Using these four benchmarks, we evaluated the latency/flit
and throughput of the proposed 3D-FTO system under each
of the aforementioned applications. The obtained results are
compared with the baseline [6], [7] and XYZ-based [26]
routers. We observed the performance variation of 3D-FTO
under different fault-rates of link, crossbar-link, and buffer-
slots (0%, 5%, 10%, and 20%). We set the number of
Bypass-links in BLoD to three as it seemed to be the best
tradeoff between performance and complexity. For the input-
buffer, we set the buffer depth to four and employed the RAB
mechanism. During the evaluation, we divided the faults into
three portions: the biggest portion is allocated for transient
faults and the remaining two smaller portions are considered
for permanent faults and intermittent faults according to the
assumption made in [19]. We set the fault-rate for each one
of the targeted components (input-buffer, crossbar, and links)
proportionally to their corresponding percentage of the entire
router’s area. The number of links, crossbar-links, and buffer
slots can be calculated using formula (1) [4], (2), and (3),
respectively:

#links = N1×N2×(N3−1)+N1×N3×(N2−1)+N2×N3×(N1−1)
(1)

#Crossbar links = OP × N1 × N2 × N3 (2)

#Bu f f er slots = BD × IP × N1 × N2 × N3 (3)

Where N1, N2 and N3 are the respective network’s X, Y and
Z dimensions. OP is the number of output-ports, IP is the
number of input-ports, and BD is the buffer depth.

Table I
Simulation configuration.

Parameters / System XYZ-based Baseline 3D-FTO

Network Size JPEG 3×3×3 3×3×3 3×3×3

(Mesh) Matrix 3×6×6 3×6×6 3×6×6
Transpose & Uniform 4×4×4 4×4×4 4×4×4

Flit size
JPEG 27 bits 30 bits 30 bits
Matrix 31 bits 34 bits 34 bits

Transpose & Uniform 31 flit 34 flit 34 flit

Header size
JPEG 10 bits 13 bits 13 bits
Matrix 10 bits 13 bits 13 bits

Transpose & Uniform 10 bits 13 bits 13 bits

Payload size
JPEG 16 bits 16 bits 16 bits
Matrix 21 bits 21 bits 21 bits

Transpose & Uniform 21 bits 21 bits 21 bits
Buffer Depth 4 4 4

Routing XYZ LA-XYZ LAFT

B. Evaluation results

1) Latency per flit evaluation: The results of the la-
tency/flit evaluation are depicted in Fig. 5. We can see
that in the absence of faults, and thanks to the employed
LAFT routing, 3D-FTO system has the best performance
when compared to XYZ- and the LA-XYZ- based systems,
even at 5% (Uniform and Matrix) or 10% (Transpose) fault
rates. This latency/flit reduction can reach an average of
37% and 18.5% when compared to the XYZ- and LA-XYZ-
based systems, respectively. When the fault-rate increases
in the three components (link, crossbar, and input-buffer)
3D-FTO’s latency increases, as well. However, in some
applications (Transpose and Matrix) 3D-FTO still performs
better than XYZ-based system (no fault consideration) even
at 20% fault-rate, but higher latency than that of the baseline
LA-XYZ-based design. With the Uniform and JPEG applica-
tions, the latency degradation is more important. it can reach
an average of 12.1% and 31.7% when compared to XYZ-
and the LA-XYZ based systems. This performance degrada-
tion is caused mainly by the nonminimal routing required in
such communication types. In JPEG and Uniform, neighbor-
ing nodes tend to communicate between each other. A single
fault in a buffer-slot or a crossbar-link will not considerably
affect the system performance; however, a single faulty-link
causes nonminimal routings. As a consequence, additional
clock cycles are necessary to perform the rerouting. But,
with other applications (Transpose or Matrix) exhibiting long
distance communications, 3D-FTO performs better or almost
the same as XYZ-based system when considering a 20%
fault-rate.

2) Throughput evaluation: The throughput evaluation re-
sults are shown in Fig. 6. The 3D-FTO system exhibits the
best throughput when compared to the other two systems
in the absence of faults. This throughput outperformance
can reach the 51% and 38% when compared to XYZ-
and LA-XYZ- based systems, respectively. Even in the
presence of faults, 3D-FTO still maintains a sustainable
throughput, and as we increase the fault-rate the throughput
degrades gracefully. This is justified by the fact that 3D-FTO



(a) (b)

(c) (d)
Figure 5. 3D-Fault-Tolerant-OASIS latency/flit evaluation with: (a) Transpose; (b) Uniform; (c) 6 × 6 Matrix; (d) JPEG.

(a) (b)

(c) (d)
Figure 6. 3D-Fault-Tolerant-OASIS throughput evaluation with: (a) Transpose; (b) Uniform; (c) 6 × 6 Matrix; (d) JPEG.

provides higher throughput than XYZ-based system even
when considering 20% fault-rate (Transpose and Matrix-
multiplication). When running Uniform and JPEG-encoder,
3D-FTO provides an average of 11.2% and 30% less
throughput than that of XYZ- and LA-XYZ- based systems,
respectively. It is important to mention that neither XYZ-
or LA-XYZ- based systems support fault-tolerance, and any
single failure may lead to corrupted information or the entire
system crash.

3) Complexity Evaluation: In our final evaluation, we
considered the hardware complexity of the proposed 3D-
FTO. Table II illustrates the hardware complexity results
of 3D-FTO in terms of area and power (static+dynamic)
when compared to the baseline router [6], [7]. From this
table, we can see that the proposed router requires 38.3%
additional area and 32.6% increased power. It is important
to mention that the power overhead became less important
when connecting all the modules together and disabling the
unused components.



Table II
Router hardware complexity evaluation results.

System / Parameter Area Total Power
µm µW

Baseline 7654 886.32
3D-FTO 10587 1175.6

IV. Conclusion and FutureWork

In this paper, we present a Fault- and Traffic-aware 3D-
NoC router architecture, called 3D-Fault-Tolerant-OASIS
(3D-FTO). 3D-FTO manages to avoid the system failure in
the presence of a large number of faults, while ensuring
graceful performance degradation and minimizing the addi-
tional hardware complexity and remaining power-efficient.
In addition to Look-Ahead-Fault-Tolerant routing algorithm,
previously presented to tackle the faulty-links problem, the
proposed architecture is leveraging on reconfigurable com-
ponents to handle the fault occurrence in the input-buffers
thanks to a smart mechanism, called Random-Access-Buffer
(RAB). Moreover, a technique named Bypass-Link-on-
Demand was introduced to relieve the congestion caused
by faults in the crossbar.

From the performance evaluation, the proposed system
still performs better than XYZ-based system with Trans-
pose and Matrix-multiplication applications, even at 20%
fault-rate. In terms of hardware complexity, 3D-FTO ex-
hibits 38.3% additional area and 32.6% power overhead
when compared to the baseline LA-XYZ-based system. The
power overhead could be controlled thanks to the power-
management employed in 3D-FTO that is based on disabling
the unused components and faulty input-ports.

As a future work, we want to study the possibility of im-
plementing a fault-detection mechanism capable of detecting
different kinds of faults at runtime with no considerable area
or latency overhead. In addition, we plan to perform an in-
depth study of thermal power to observe 3D-FTO’s behavior
with such important parameter.

References

[1] A. Ben Ahmed and A. Ben Abdallah, “Graceful Deadlock-
Free Fault-Tolerant Routing Algorithm for 3D Network-
on-Chip Architectures”, Journal of Parallel and Distributed
Computing, Vol. 74-4, pp. 2229-2240, Apr. 2014.

[2] A. Ben Ahmed and A. Ben Abdallah, “Architecture and
Design of High-throughput, Low-latency, and Fault-Tolerant
Routing Algorithm for 3D-Network-on-Chip (3D-NoC)”,
The Journal of Supercomputing, Vol. 66-3, pp. 1507-1532,
Dec. 2013.

[3] X. Wu et al., “Electrical Characterization for Intertier Con-
nections and Timing Analysis for 3-D ICs”, IEEE Trans. on
Very Large Scale Integration (VLSI) Systems, Vol. 20-1, pp.
186-191, Jan. 2012.

[4] B. Feero and P. P. Pande, “Performance Evaluation
for Three-Dimensional Networks-on-Chip”, Proc. of IEEE
Computer Society Annual Symp. on VLSI (ISVLSI), pp.
305-310, May 2007.

[5] A. Ben Ahmed, A. Ben Abdallah and K. Kuroda, “Archi-
tecture and Design of Efficient 3D Network-on-Chip (3D
NoC) for Custom Multicore SoC”, IEEE Proc. of the 5th Int.
Conf. on Broadband, Wireless Computing, Communication
and Applications, pp. 67-73, November 2010.

[6] A. Ben Ahmed and A. Ben Abdallah, “LA-XYZ: Low
Latency, High Throughput Look-Ahead Routing Algorithm
for 3D Network-on-Chip (3D-NoC) Architecture”, The 6th
IEEE Int. Symp. on Embedded Multicore SoCs, pp. 167-
174, Sept. 2012.

[7] A. Ben Ahmed and A. Ben Abdallah, “Low-overhead Rout-
ing Algorithm for 3D Network-on-Chip”, IEEE Proc. of The
Third Int. Conf. on Networking and Computing pp. 23-32,
December 2012.

[8] A. Ben Abdallah, “Multicore Systems-on-Chip: Practical
Hardware/Software Design”, 2nd Edition, Publisher: At-
lantis Press, 2013, ISBN-13:978-9491216916.

[9] L. Benini and G. De Micheli, “Networks on Chips: Tech-
nology and Tools”, Morgan Kauffmann, 2006.

[10] I. Loi et al., “Characterization and Implementation of Fault-
Tolerant Vertical Links for 3-D Networks-on- Chip”, IEEE
Trans. on CAD of Integrated Circuits and Systems, Vol. 30-
1, pp. 124-134, Jan. 2011.

[11] M. Cuviello, S. Dey, X. Bai, and Y. Zhao, “Fault modeling
and simulation for crosstalk in system-on-chip intercon-
nects”, In IEEE/ACM Int. Digest of Technical Papers on
Computer-Aided Design, pp. 297-303, 1999.

[12] S. Borkar, “Designing reliable systems from unreliable
components: The challenges of transistor variability and
degradation” IEEE Micro, Vol. 25-6, pp. 10-16, Nov.-Dec.
2005.

[13] T. Kuroi et al., “Sub-Quarter-Micron Dual Gate CMOSFETs
with Ultra-Thin Gate Oixde of 2nm”, Symp. on VLSI
Technology, pp.210-211, Jun. 1996.

[14] M. Radetzki et al., “Methods for Fault Tolerance in
Networks-on-Chip”, ACM Computing Surveys (CSUR),
Vol. 46-1, pp. 1-38, Oct. 2013.

[15] K. Constantinides et al., “BulletProof: A defect-tolerant
CMP switch architecture”, Proc. of the 12th Int. Symp. on
High-Performance Computer Architecture (HPCA), pp. 5-
16, Feb. 2006.

[16] J. Kim et al., “A Gracefully Degrading and Energy-Efficient
Modular Router Architecture for On-Chip Networks”, Proc.
of the 33rd Int. Symp. on Computer Architecture (ISCA),
pp. 4-15, Jun. 2006.

[17] P. Poluri and A. Louri, “An Improved Router Design for
Reliable On-Chip Networks”, Proc. of the 25th Int. Symp. on
Computer Architecture and High Performance Computing
(SBAC-PAD), pp. 49-56, Oct. 2013.



[18] A. DeOrio et al., “A Reliable Routing Architecture and
Algorithm for NoCs”, IEEE Trans. on CAD of Integrated
Circuits and Systems, Vol. 31-5, pp. 726-739, May 2012.

[19] T. Lehtonen, P. Liljeberg and J. Plosila, “Online Recon-
figurable Self-timed links for Fault Tolerant NoC”, VLSI
Design, Vol. 2007, pp. 1-13, 2007.

[20] A. Ben Ahmed and A. Ben Abdallah, “Fault-tolerant Rout-
ing Algorithm with Deadlock Recovery Support for 3D-NoC
Architectures”, The 7th IEEE International Symposium on
Embedded Multicore SoCs, pp. 67-72, September 2013.

[21] Nangate 45nm open cell library, http://www.nangate.com.

[22] P. Chan et al., “The Parallel Algorithm Implementation of
Matrix Multiplication Based on ESCA”, IEEE Asia Pacific
Conf. on Circuits and Systems, pp. 1091-1094, Dec. 2010.

[23] Y. L. Lee, J. W. Yang, and J. M. Jou, “Design of a distributed
JPEG encoder on a scalable NoC platform”, IEEE Int. Symp.
VLSI-DAT, pp. 132-135, Apr. 2008.

[24] A. A. Chien and J. H. Kim, “Planar-Adaptive Routing: Low-
Cost Adaptive Networks for Multiprocessors”, Journal of the
ACM, Vol. 42-1, pp. 91-123, Jan 1995.

[25] R. Sivaram, “Queuing delays for uniform and nonuniform
traffic patterns in a MIN”, ACM SIGSIM Simulation Digest,
Vol. 22-1, pp. 17-27, 1990.

[26] H. Sullivan and T. R. Bashkow, “Large Scale, Homogeneous,
Fully Distributed Parallel Machine”, Annual Symposium
on Computer Architecture, ACM Press, pp. 105-117, Mar.
1977.


