Comparison of landmark-based and automatic methods for cortical surface registration

Dimitrios Pantazis, Anand Joshi, Jintao Jiang, David W. Shattuck, Lynne E. Bernstein, Hanna Damasio, Richard M. Leahy
2010 NeuroImage  
Group analysis of structure or function in cerebral cortex typically involves, as a first step, the alignment of cortices. A surface-based approach to this problem treats the cortex as a convoluted surface and coregisters across subjects so that cortical landmarks or features are aligned. This registration can be performed using curves representing sulcal fundi and gyral crowns to constrain the mapping. Alternatively, registration can be based on the alignment of curvature metrics computed over
more » ... the entire cortical surface. The former approach typically involves some degree of user interaction in defining the sulcal and gyral landmarks while the latter methods can be completely automated. Here we introduce a cortical delineation protocol consisting of 26 consistent landmarks spanning the entire cortical surface. We then compare the performance of a landmark-based registration method that uses this protocol with that of two automatic methods implemented in the software packages FreeSurfer and BrainVoyager. We compare performance in terms of discrepancy maps between the different methods, the accuracy with which regions of interest are aligned, and the ability of the automated methods to correctly align standard cortical landmarks. Our results show similar performance for ROIs in the perisylvian region for the landmark-based method and FreeSurfer. However, the discrepancy maps showed larger variability between methods in occipital and frontal cortex and automated methods often produce misalignment of standard cortical landmarks. Consequently, selection of the registration approach should consider the importance of accurate sulcal alignment for the specific task for which coregistration is being performed. When automatic methods are used, the users should ensure that sulci in regions of interest in their studies are adequately aligned before proceeding with subsequent analysis.
doi:10.1016/j.neuroimage.2009.09.027 pmid:19796696 pmcid:PMC2818237 fatcat:u4cc7ixitrfrvfl2o7u5ndstky