Full Hierarchic Versus Non-Hierarchic Classification Approaches for Mapping Sealed Surfaces at the Rural-Urban Fringe Using High-Resolution Satellite Data

Tim De Roeck, Tim Van de Voorde, Frank Canters
<span title="2009-01-05">2009</span> <i title="MDPI AG"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/taedaf6aozg7vitz5dpgkojane" style="color: black;">Sensors</a> </i> &nbsp;
Since 2008 more than half of the world population is living in cities and urban sprawl is continuing. Because of these developments, the mapping and monitoring of urban environments and their surroundings is becoming increasingly important. In this study two object-oriented approaches for high-resolution mapping of sealed surfaces are compared: a standard non-hierarchic approach and a full hierarchic approach using both multi-layer perceptrons and decision trees as learning algorithms. Both
more &raquo; ... ods outperform the standard nearest neighbour classifier, which is used as a benchmark scenario. For the multi-layer perceptron approach, applying a hierarchic classification strategy substantially increases the accuracy of the classification. For the decision tree approach a one-against-all hierarchic classification strategy does not lead to an improvement of classification accuracy compared to the standard all-against-all approach. Best results are obtained with the hierarchic multi-layer perceptron classification strategy, producing a kappa value of 0.77. A simple shadow reclassification procedure based on characteristics of neighbouring objects further increases the kappa value to 0.84.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.3390/s90100022">doi:10.3390/s90100022</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/22389586">pmid:22389586</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC3280732/">pmcid:PMC3280732</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/ldfexb5ycnfydbou6e6w7wdwfy">fatcat:ldfexb5ycnfydbou6e6w7wdwfy</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20170809012404/http://pdf.easechem.com/pdf/25/7045851e-07e9-4b90-a00f-a9b6eb1cd434.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/5a/dd/5add287304f0b0753cd7c04105a9e30186f699ba.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.3390/s90100022"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> mdpi.com </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3280732" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>