When is it Biased? Assessing the Representativeness of Twitter's Streaming API [article]

Fred Morstatter, Jürgen Pfeffer, Huan Liu
2014 arXiv   pre-print
Twitter has captured the interest of the scientific community not only for its massive user base and content, but also for its openness in sharing its data. Twitter shares a free 1% sample of its tweets through the "Streaming API", a service that returns a sample of tweets according to a set of parameters set by the researcher. Recently, research has pointed to evidence of bias in the data returned through the Streaming API, raising concern in the integrity of this data service for use in
more » ... ch scenarios. While these results are important, the methodologies proposed in previous work rely on the restrictive and expensive Firehose to find the bias in the Streaming API data. In this work we tackle the problem of finding sample bias without the need for "gold standard" Firehose data. Namely, we focus on finding time periods in the Streaming API data where the trend of a hashtag is significantly different from its trend in the true activity on Twitter. We propose a solution that focuses on using an open data source to find bias in the Streaming API. Finally, we assess the utility of the data source in sparse data situations and for users issuing the same query from different regions.
arXiv:1401.7909v1 fatcat:r6i3v37lb5f4vcib4syb3yi3vu