A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2017; you can also visit the original URL.
The file type is application/pdf
.
Learning Bayesian networks from incomplete databases using a novel evolutionary algorithm
2008
Decision Support Systems
This paper proposes a novel method for learning Bayesian networks from incomplete databases in the presence of missing values, which combines an evolutionary algorithm with the traditional Expectation Maximization (EM) algorithm. A data completing procedure is presented for learning and evaluating the candidate networks. Moreover, a strategy is introduced to obtain better initial networks to facilitate the method. The new method can also overcome the problem of getting stuck in sub-optimal
doi:10.1016/j.dss.2008.01.002
fatcat:jk5wsgyonndytjeoiqofxbssw4