A tied Fermi liquid to Luttinger liquid model for nonlinear transport in conducting polymers

Jiawei Wang, Jiebin Niu, Bin Shao, Guanhua Yang, Congyan Lu, Mengmeng Li, Zheng Zhou, Xichen Chuai, Jiezhi Chen, Nianduan Lu, Bing Huang, Yeliang Wang (+2 others)
2021 Nature Communications  
AbstractOrganic conjugated polymers demonstrate great potential in transistors, solar cells and light-emitting diodes, whose performances are fundamentally governed by charge transport. However, the morphology–property relationships and the underpinning charge transport mechanisms remain unclear. Particularly, whether the nonlinear charge transport in conducting polymers is appropriately formulated within non-Fermi liquids is not clear. In this work, via varying crystalline degrees of samples,
more » ... e carry out systematic investigations on the charge transport nonlinearity in conducting polymers. Possible charge carriers' dimensionality is discussed when varying the molecular chain's crystalline orders. A heterogeneous-resistive-network (HRN) model is proposed based on the tied-link between Fermi liquids (FL) and Luttinger liquids (LL), related to the high-ordered crystalline zones and weak-coupled amorphous regions, respectively. The HRN model is supported by precise electrical and microstructural characterizations, together with theoretic evaluations, which well describes the nonlinear transport behaviors and provides new insights into the microstructure-correlated charge transport in organic solids.
doi:10.1038/s41467-020-20238-5 pmid:33397910 pmcid:PMC7782818 fatcat:bmkqzfxmbbd75e7ixi5mvg4jye