A Semieager Classifier for Open Relation Extraction

Peiqian Liu, Xiaojie Wang
2018 Mathematical Problems in Engineering  
A variety of open relation extraction systems have been developed in the last decade. And deep learning, especially with attention model, has gained much success in the task of relation classification. Nevertheless, there is, yet, no research reported on classifying open relation tuples to our knowledge. In this paper, we propose a novel semieager learning algorithm (SemiE) to tackle the problem of open relation classification. Different from the eager learning approaches (e.g., ANNs) and the
more » ... g., ANNs) and the lazy learning approaches (e.g., kNN), the SemiE offers the benefits of both categories of learning scheme, with its significantly lower computational cost (O(n)). This algorithm can also be employed in other classification tasks. Additionally, this paper presents an adapted attention model to transform relation phrases into vectors by using word embedding. The experimental results on two benchmark datasets show that our method outperforms the state-of-the-art methods in the task of open relation classification.
doi:10.1155/2018/4929674 fatcat:cvefa3bexvgu7pjyvmkraliosi