Surface Nanomechanics of Biomolecules and Supramolecular Systems [chapter]

Paolo Bergese, Stefania Federici
2017 Nanomechanics  
Surface nanomechanics of biomolecules and supramolecular systems is an interdisciplinary and vital area of current research, with implications/applications spanning from synthetic biology to regenerative medicine, from smart surfaces to molecular machines. Biomolecule surface transformations and nanomachinery arise upon "wiring" them onto surfaces and interfaces. Surface confinement of biomolecules is a common feature of biological systems (e.g., cell membranes) and often a mandatory step for
more » ... andatory step for translating their properties into real-world applications (e.g., biosensors). On surfaces biomolecules undergo peculiar transformations and interactions which they do not experience in solution. Such unedited effects open challenges in synthetic systems, for example, by altering or hindering the designed/expected property, but also disclose a wealth of opportunities and surprises. Based on our latest research, this chapter will bring fresh excerpts from the field. It will start with an accessible description of thermodynamics of surface nanomechanics of biomolecules and supramolecular systems and then will show how it can be implemented to gain understanding of grow factor cell signaling, to single out small ligands able to inhibit protein misfolding, to measure energetics of surface confined ferritin during iron loading, and to realize a universal probe for ammine-based designer drugs.
doi:10.5772/intechopen.68293 fatcat:nrsdnms24vdudg4j77pseqo3cu