Regulation of the lic Operon ofBacillus subtilis and Characterization of Potential Phosphorylation Sites of the LicR Regulator Protein by Site-Directed Mutagenesis

Steffen Tobisch, Jörg Stülke, Michael Hecker
1999 Journal of Bacteriology  
The lic operon of Bacillus subtilis is required for the transport and degradation of oligomeric β-glucosides, which are produced by extracellular enzymes on substrates such as lichenan or barley glucan. The licoperon is transcribed from a ςA-dependent promoter and is inducible by lichenan, lichenan hydrolysate, and cellobiose. Induction of the operon requires a DNA sequence with dyad symmetry located immediately upstream of the licBCAH promoter. Expression of the lic operon is positively
more » ... s positively controlled by the LicR regulator protein, which contains two potential helix-turn-helix motifs, two phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) regulation domains (PRDs), and a domain similar to PTS enzyme IIA (EIIA). The activity of LicR is stimulated by modification (probably phosphorylation) of both PRD-I and PRD-II by the general PTS components and is negatively regulated by modification (probably phosphorylation) of its EIIA domain by the specific EIILic in the absence of oligomeric β-glucosides. This was shown by the analysis oflicR mutants affected in potential phosphorylation sites. Moreover, the lic operon is subject to carbon catabolite repression (CCR). CCR takes place via a CcpA-dependent mechanism and a CcpA-independent mechanism in which the general PTS enzyme HPr is involved.
doi:10.1128/jb.181.16.4995-5003.1999 fatcat:owkovi46dngljicxdvdgbkzbfa