SIMD code generation in data-parallel programming [article]

Nicolas Fritz, Universität Des Saarlandes, Universität Des Saarlandes
2009
Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar. Zusammenfassung Parallelverarbeitung wird heutzutage in handelsüblichen PCs von einer Reihe verschiedener Komponenten unterstützt. Grafikprozessoren (GPUs) und Vektoreinheiten in CPUs sind zwei dieser Komponenten. Da die Entwicklung von Anwendungen,
more » ... von Anwendungen, die diese Parallelität nutzen, eine anspruchsvolle Aufgabe ist, muss sich ein Programmierer detaillierte Kenntnisse der internen Hardwarestruktur aneignen. Mit CGiS stellen wir eine datenparallele Programmiersprache vor, die eine gemeinsame Abstraktion für Grafikprozessoren und Vektoreinheiten in CPUs bietet und ein einheitliches Programmiermodell für beide bereitstellt. In vorherigen Arbeiten haben wir bereits die Nutzbarkeit von CGiS für GPUs gezeigt. In der vorliegenden Arbeit bilden wir das abstrakte Programmiermodel von CGiS auf CPUs mit SIMD (Single Instruction Multiple Data) Instruktionssatz ab. Wir haben eine Reihe relevanter Programmanalysen angepasst und implementiert um Parallelität aufzudecken und zu nutzen. Die Codegenerierungsphase basiert auf ausgewählten Optimierungsalgorithmen, die speziell auf die Generierung von SIMD-Code zugeschnitten sind. Durch Profile für verschiedene Architekturen ist es uns möglich, die Codegenierung zu steuern. Um die Effektivität unseres Ansatzes unter Beweis zu stellen, haben wir Backends für die beiden am weitesten verbreiteten SIMD-Instruktionssätze implementiert: Die "Streaming SIMD Extensions" von Intel und AltiVec von Freescale. Zusätzlich haben wir ein prototypisches Backend für den Cell Prozessor von IBM, als Beispiel für eine Multi-Core-Architektur, integriert. Die Ergebnisse unserer Experimente belegen eine ausgezeichnete durchschnittliche Beschleunigung um einen Faktor von 3 im Vergleich zu handgeschriebenen C++-Implementierungen. Diese Resultate untermauern unseren Ansatz: Mittels CGiS lässt sich leistungsstarker Code für SIMD-und Multi-Core-Applikationen generieren.
doi:10.22028/d291-25954 fatcat:62t2c6leefcrnogkwmx2b6hneu