A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is application/pdf
.
A Framework of Metrics for Differential Privacy from Local Sensitivity
2020
Proceedings on Privacy Enhancing Technologies
AbstractThe meaning of differential privacy (DP) is tightly bound with the notion of distance on databases, typically defined as the number of changed rows. Considering the semantics of data, this metric may be not the most suitable one, particularly when a distance comes out as larger than the data owner desired (which would undermine privacy). In this paper, we give a mechanism to specify continuous metrics that depend on the locations and amounts of changes in a much more nuanced manner. Our
doi:10.2478/popets-2020-0023
fatcat:igy6chj3qngsdmwnzczl35uhmi