A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2017; you can also visit the original URL.
The file type is application/pdf
.
Adaptive covariance matrix estimation through block thresholding
2012
Annals of Statistics
Estimation of large covariance matrices has drawn considerable recent attention, and the theoretical focus so far has mainly been on developing a minimax theory over a fixed parameter space. In this paper, we consider adaptive covariance matrix estimation where the goal is to construct a single procedure which is minimax rate optimal simultaneously over each parameter space in a large collection. A fully data-driven block thresholding estimator is proposed. The estimator is constructed by
doi:10.1214/12-aos999
fatcat:yhwxrl5lj5f4hccetath4xgcbu