Can bottom-up ocean CO2fluxes be reconciled with atmospheric13C observations?

Caroline B. Alden, John B. Miller, James W.C. White
2010 Tellus: Series B, Chemical and Physical Meteorology  
A B S T R A C T The rare stable carbon isotope, 13 C, has been used previously to partition CO 2 fluxes into land and ocean components. Net ocean and land fluxes impose distinctive and predictable fractionation patterns upon the stable isotope ratio, making it an excellent tool for distinguishing between them. Historically, isotope constrained inverse methods for calculating CO 2 surface fluxes-the 'double deconvolution'-have disagreed with bottom-up ocean flux estimates. In this study, we use
more » ... this study, we use the double deconvolution framework, but add, as a constraint, independent estimates of time histories of ocean fluxes to the atmospheric observations of CO 2 and 13 CO 2 . We calculate timeseries of net land flux, total disequilibrium flux and terrestrial disequilibrium flux from 1991 to 2008 that are consistent with bottom-up net ocean fluxes. We investigate possible drivers of interannual variability in terrestrial disequilibrium flux, including terrestrial discrimination, and test the sensitivity of our results to those mechanisms. We find that C 3 plant discrimination and shifts in the global composition of C 3 and C 4 vegetation are likely drivers of interannual variability in terrestrial disequilibrium flux, while contributions from heterotrophic respiration and disturbance anomalies are also possible.
doi:10.3402/tellusb.v62i5.16581 fatcat:gpwx6ujrpbcivevdp5ptdrm3qm