Vaccination of biological cellulose fibers with glucose: A gateway to novel nanocomposites

Tamer Y A Fahmy, Fardous Mobarak
2017 Figshare  
This work introduces, for the first time worldwide, the means to preserve and protect the natural nanoporous structure of the never-dried plant cell wall, against the irreversible collapse, which occurs due to drying. Simultaneously, these means, used for the above-mentioned aim, provide a gateway to novel nanocomposite materials, which retain the super reactive and super absorbent properties of the never-dried biological cellulose fibers. The present work showed, for the first time worldwide,
more » ... st time worldwide, that glucose can be vaccinated into the cell wall micropores or nanostructure of the never-dried biological cellulose fibers, by simple new techniques, to create a reactive novel nanocomposite material possessing surprising super absorbent properties. Inoculation of the never dried biological cellulose fibers, with glucose, prevented the collapse of the cell wall nanostructure, which normally occurs due to drying. The nanocomposite, produced after drying of the glucose inoculated biological cellulose, retained the super absorbent properties of the never dried biological cellulose fibers. It was found that glucose under certain circumstances grafts to the never dried biological cellulose fibers to form a novel natural nanocomposite material. About 3-8% (w/w) glucose remained grafted in the novel nanocomposite.
doi:10.6084/m9.figshare.4902830.v3 fatcat:ymqjub6r5jdnreufd632mkjhei