Linear and nonlinear characterization of low-stress high-confinement silicon-rich nitride waveguides

Clemens J. Krückel, Attila Fülöp, Thomas Klintberg, Jörgen Bengtsson, Peter A. Andrekson, Víctor Torres-Company
2015 Optics Express  
In this paper we introduce a low-stress silicon enriched nitride platform that has potential for nonlinear and highly integrated optics. The manufacturing process of this platform is CMOS compatible and the increased silicon content allows tensile stress reduction and crack free layer growth of 700 nm. Additional benefits of the silicon enriched nitride is a measured nonlinear Kerr coefficient n 2 of 1.4·10 −18 m 2 /W (5 times higher than stoichiometric silicon nitride) and a refractive index
more » ... refractive index of 2.1 at 1550 nm that enables high optical field confinement allowing high intensity nonlinear optics and light guidance even with small bending radii. We analyze the waveguide loss (∼1 dB/cm) in a spectrally resolved fashion and include scattering loss simulations based on waveguide surface roughness measurements. Detailed simulations show the possibility for fine dispersion and nonlinear engineering. In nonlinear experiments we present continuouswave wavelength conversion and demonstrate that the material does not show nonlinear absorption effects. Finally, we demonstrate microfabrication of resonators with high Q-factors (∼10 5 ).
doi:10.1364/oe.23.025827 pmid:26480096 fatcat:a4c2qjs7urbgzfyg27fwrbxwam