Multicomponent Fe-Based Bulk Metallic Glasses with Excellent Corrosion and Wear Resistances

Guan Zhang, Wenlei Sun, Lei Xie, Chengwu Zhang, Jie Tan, Xuan Peng, Qiang Li, Xu Ma, Dongmei Zhao, Jiangtong Yu
2022 Metals  
In this study, new multicomponent Fe54M5Cr15Mo6Si2B4P10C4 (M = Fe, Co, and Ni, denoted as Fe59, Fe54Co5, and Fe54Ni5, respectively) bulk metallic glasses (BMGs) with excellent corrosion and wear resistances were synthesized using the J-quenching technique and fluxing treatment. The synthesized Fe-based BMGs possessed a large glass-forming ability, and the maximum diameters of the Fe59, Fe54Co5, and Fe54Ni5 glassy alloy rods reached 5.5, 4.5, and 4.0 mm, respectively. The Fe59 BMG had a wide
more » ... rcooled liquid region of 65 K. Potentiodynamic tests in 3.5 wt.% NaCl solution showed that the corrosion resistances of the synthesized Fe-based BMGs were relatively better than that of the 316L stainless steel. The Fe59 BMG had the highest corrosion resistance, with the lowest self-corrosion current density in the order of 10−8 A·cm−2. Wear tests showed that the synthesized Fe-based BMGs exhibited excellent wear resistances, and the wear rate of the Fe59 BMG was as low as approximately 1.73 × 10−15 m3·N−1·m−1. The rare-earth-element-free Fe-based BMGs, especially the Fe59 BMG, have a low cost, large glass-forming ability, and excellent wear and corrosion resistance, which make them good candidates for wear-and corrosion-resistant coating materials.
doi:10.3390/met12040564 fatcat:6rze67iopzdhtleg4lku5t6w6i