An Efficient Link Prediction Technique in Social Networks based on Node Neighborhoods

Gypsy Nandi, Anjan Das
2018 International Journal of Advanced Computer Science and Applications  
The unparalleled accomplishment of social networking sites, such as Facebook, LinkedIn and Twitter has modernized and transformed the way people communicate to each other. Nowadays, a huge amount of information is being shared by online users through these social networking sites. Various online friendship sites such as Facebook and Orkut, allow online friends to share their thoughts or opinions, comment on others' timeline or photos, and most importantly, meet new online friends who were known
more » ... ends who were known to them before. However, the question remains as to how to quickly propagate one's online network by including more and more new friends. For this, one of the easy methods used is list of 'Suggested Friends' provided by these online social networking sites. For suggestion of friends, prediction of links for each online user is needed to be made based on studying the structural properties of the network. Link prediction is one of the key research directions in social network analysis which has attracted much attention in recent years. This paper discusses about a novel efficient link prediction technique LinkGyp and many other commonly used existing prediction techniques for suggestion of friends to online users of a social network and also carries out experimental evaluations to make a comparative analysis among each technique. Our results on three real social network datasets show that the novel LinkGyp link prediction technique yields more accurate results than several existing link prediction techniques.
doi:10.14569/ijacsa.2018.090637 fatcat:2tjhmozlcra5hlgbhspaovm4fy