Land Use Change and the European Biofuels Policy: The expansion of oilseed feedstocks on lands with high carbon stocks

Alexandre Strapasson, Juliana Falcão, Timo Rossberg, Grahame Buss, Jeremy Woods, Steven Peterson
2019 Oilseeds and fats, crops and lipids  
The focus of this article is on the potential land use change impacts associated with the oilseed-based biodiesel consumption. The three main crops used for biodiesel production to date are oilseed rape (OSR), soybeans and oil palm. Therefore, the objective of this paper is to provide a technical assessment of potential land use change arising from the growth of these three major crops at global level, obtained through a broad country-level analysis for their respective major producing
more » ... producing countries. The article presents an historical data analysis, evaluating the interaction between the expansion and contraction of these three crops over the last three decades (with a closer look from 2008) together with the carbon stock changes to the land. We categorise the land use by its carbon stock and resulting carbon stock changes from land use change. Crops aimed at the production of ethanol, such as maize (corn), sugarcane, wheat, cassava and sugar beet, although extremely relevant for biofuel policies, are not the subject of this present study. While we did not know at the time of writing this report how the term "significant" would be defined in the EU delegated act we concluded from the analysis of the historical data and using the high ILUC-risk definition as it stands, that the emissions associated with palm and soy are significant. For oil palm, we take Indonesia and Malaysia as proxy for the global position. We calculate an average expansion of 29% on high carbon stock land. For soy, we calculate a global average of 19% expansion. We calculate the global average greenhouse gas emissions intensities based on the ILUC-risks as 56 gCO2eq/MJ for soy oil and 108 gCO2eq/MJ for palm oil. Future projections (OECD-FAO, 2017) suggest these numbers could drop significantly. We do not find evidence for high ILUC-risk expansion of oilseed rape.
doi:10.1051/ocl/2019034 fatcat:h67xienkqjetpoagwezugmt6na