Handcuffing intrinsically disordered regions in Mlh1-Pms1 disrupts mismatch repair [article]

Christopher M. Furman, Ting-Yi Wang, Qiuye Zhao, Kumar Yugandhar, Haiyuan Yu, Eric Alani
2021 bioRxiv   pre-print
AbstractThe DNA mismatch repair (MMR) factor Mlh1-Pms1 contains long intrinsically disordered regions (IDRs). While essential for MMR, their exact functions remain elusive. We performed cross-linking mass spectrometry to identify the major interactions within the Mlh1-Pms1 heterodimer and used this information to insert FRB and FKBP dimerization domains into the IDRs of Mlh1 and Pms1. Yeast bearing these constructs were grown with rapamycin to induce dimerization. Strains containing FRB and
more » ... domains in the Mlh1 IDR displayed complete MMR defects when grown with rapamycin, but removing rapamycin restored MMR functions. Furthermore, linking the Mlh1 and Pms1 IDRs through FRB-FKBP dimerization disrupted Mlh1-Pms1 binding to DNA, inappropriately activated Mlh1-Pms1, and caused MMR defects in vivo. We conclude that dynamic and coordinated rearrangements of the MLH IDRs regulate how the complex clamps DNA to catalyze MMR. The application of the FRB-FKBP dimerization system to interrogate in vivo functions of a critical repair complex will be useful for probing IDRs in diverse enzymes and to probe transient loss of MMR on demand.
doi:10.1101/2021.03.02.433678 fatcat:ojqur3cbpvelheyokdbs55lxha