A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is application/pdf
.
Alternating, Pattern-Avoiding Permutations
2009
Electronic Journal of Combinatorics
We study the problem of counting alternating permutations avoiding collections of permutation patterns including $132$. We construct a bijection between the set $S_n(132)$ of $132$-avoiding permutations and the set $A_{2n + 1}(132)$ of alternating, $132$-avoiding permutations. For every set $p_1, \ldots, p_k$ of patterns and certain related patterns $q_1, \ldots, q_k$, our bijection restricts to a bijection between $S_n(132, p_1, \ldots, p_k)$, the set of permutations avoiding $132$ and the
doi:10.37236/245
fatcat:qjfnd3kd2bajnpmz4dgi3zrxz4