Varieties of minimal rational tangents of unbendable rational curves subordinate to contact structures [article]

Jun-Muk Hwang
2021
A nonsingular rational curve $C$ in a complex manifold $X$ whose normal bundle is isomorphic to $${\mathcal O}_{{\mathbb P}^1}(1)^{\oplus p} \oplus {\mathcal O}_{{\mathbb P}^1}^{\oplus q}$$ for some nonnegative integers $p$ and $q$ is called an unbendable rational curve on $X$. Associated with it is the variety of minimal rational tangents (VMRT) at a point $x \in C,$ which is the germ of submanifolds ${\mathcal C}^C_x \subset {\mathbb P} T_x X$ consisting of tangent directions of small
more » ... ions of $C$ fixing $x$. Assuming that there exists a distribution $D \subset TX$ such that all small deformations of $C$ are tangent to $D$, one asks what kind of submanifolds of projective space can be realized as the VMRT ${\mathcal C}^C_x \subset {\mathbb P} D_x$. When $D \subset TX$ is a contact distribution, a well-known necessary condition is that ${\mathcal C}_x^C$ should be Legendrian with respect to the induced contact structure on ${\mathbb P} D_x$. We prove that this is also a sufficient condition: we construct a complex manifold $X$ with a contact structure $D \subset TX$ and an unbendable rational curve $C \subset X$ such that all small deformations of $C$ are tangent to $D$ and the VMRT ${\mathcal C}^C_x \subset {\mathbb P} D_x$ at some point $x\in C$ is projectively isomorphic to an arbitrarily given Legendrian submanifold. Our construction uses the geometry of contact lines on the Heisenberg group and a technical ingredient is the symplectic geometry of distributions the study of which has originated from geometric control theory.
doi:10.48550/arxiv.2101.05409 fatcat:7tlovck7wng4rfygrcykw62lya