A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2022; you can also visit the original URL.
The file type is application/pdf
.
Meta-Knowledge Transfer for Inductive Knowledge Graph Embedding
[article]
2022
arXiv
pre-print
Knowledge graphs (KGs) consisting of a large number of triples have become widespread recently, and many knowledge graph embedding (KGE) methods are proposed to embed entities and relations of a KG into continuous vector spaces. Such embedding methods simplify the operations of conducting various in-KG tasks (e.g., link prediction) and out-of-KG tasks (e.g., question answering). They can be viewed as general solutions for representing KGs. However, existing KGE methods are not applicable to
arXiv:2110.14170v3
fatcat:tuarmvyiybebrnk3qphp55bfze