Keep calm and react with foresight

Tiziano De Matteis, Gabriele Mencagli
2016 Proceedings of the 21st ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming - PPoPP '16  
This paper addresses the problem of designing scaling strategies for elastic data stream processing. Elasticity allows applications to rapidly change their configuration on-the-fly (e.g., the amount of used resources) in response to dynamic workload fluctuations. In this work we face this problem by adopting the Model Predictive Control technique, a control-theoretic method aimed at finding the optimal application configuration along a limited prediction horizon in the future by solving an
more » ... e optimization problem. Our control strategies are designed to address latency constraints, using Queueing Theory models, and energy consumption by changing the number of used cores and the CPU frequency through the Dynamic Voltage and Frequency Scaling (DVFS) support available in the modern multicore CPUs. The proactive capabilities, in addition to the latency-and energy-awareness, represent the novel features of our approach. To validate our methodology, we develop a thorough set of experiments on a high-frequency trading application. The results demonstrate the high-degree of flexibility and configurability of our approach, and show the effectiveness of our elastic scaling strategies compared with existing state-of-the-art techniques used in similar scenarios.
doi:10.1145/2851141.2851148 dblp:conf/ppopp/MatteisM16 fatcat:xnnbxolrgvfy5p6uszgtuplcl4