A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2017; you can also visit the original URL.
The file type is application/pdf
.
Enhanced Face Recognition based on PCA and SVM
2015
International Journal of Computer Applications
Feature Extraction and classification are important aspects of pattern recognition, computer vision. Principal Component Analysis is a well-known feature extraction and data representation technique. But this method is affected by illumination conditions. The combination o PCA an SVM for face recognition is presented in this paper. Before applying Principal Component Analysis preprocessing o images done by using wavelet transform. After PCA is applied or feature extraction. Support Vector
doi:10.5120/20530-2871
fatcat:6zt3c6ilefbzpevkkxdumllqyi